pip install scikit-learn 或者 直接用 Anaconda3
sklearn 提供了 preprocessing 数据预处理模块、cluster 聚类模型、manifold.TSNE 数据降维模块。
编写 test_sklearn_3.py 如下
# -*- coding: utf-8 -*-
""" 使用 sklearn 构建 K-Means 聚类模型 """
#import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn import preprocessing
from sklearn import cluster# 1.加载 鸢尾花 数据集
iris = datasets.load_iris()
# 数据集的数据
data = iris['data']
print('iris_data:','\n', data)
# 数据集的标签
target = iris['target']
print('iris_target:','\n', target)
# 数据集的特征名称
feature_names = iris['feature_names']
print('iris_feature_names:','\n', feature_names)
# 数据集的描述信息
Descr = iris['DESCR']
print('iris_DESCR:','\n', Descr)
print('-----------------------')# 离差标准化:生成规则
scaler = preprocessing.MinMaxScaler().fit(data)
# 将规则应用于数据集
data_scaler = scaler.transform(data)
# 构建 KMeans 模型,并训练模型
kmeans = cluster.KMeans(n_clusters=3,n_init=10, random_state=123).fit(data_scaler)
print('KMeans:','\n', kmeans)
# 某一鸢尾花预测类别
result = kmeans.predict([[1.5,1.5,1.5,1.5]])
print('花瓣花萼长度宽度全为1.5的鸢尾花预测类别为:', result[0])# 聚类结果可视化 manifold 复印本
from sklearn import manifold
# 使用 TSNE 进行数据降维,降成2维
tsne = manifold.TSNE(n_components=2,init='random',random_state=177).fit(data)
# 将原始数据转换为 DataFrame
df = pd.DataFrame(tsne.embedding_)
# 将聚类结果存入 df数据表
df['labels'] = kmeans.labels_
# 提取不同标签的数据
df1 = df[df['labels']==0]
df2 = df[df['labels']==1]
df3 = df[df['labels']==2]
# 绘制图形
fig = plt.figure(figsize=(9,6))
# 用不同的颜色表示不同的数据
plt.plot(df1[0],df1[1],'bo', df2[0],df2[1],'r*', df3[0],df3[1],'gD')
plt.show()
运行 python test_sklearn_3.py
参考书:【Python 数据分析与应用】第6章 使用 scikit-learn 构建模型