InnoDB引擎

   6.1 逻辑存储结构

InnoDB的逻辑存储结构如下图所示:

312ed1078c324a3299e8a28b4ec469a1.png

6.2 架构

6.2.1 概述

MySQL5.5 版本开始,默认使用InnoDB存储引擎,它擅长事务处理,具有崩溃恢复特性,在日常开发中使用非常广泛。下面是InnoDB架构图,左侧为内存结构,右侧为磁盘结构。

df326ba40baf4659982a9a9082004139.png

6.2.2 内存结构

13f0a4895c6443ccbf4164501a4ddf1c.png

在左侧的内存结构中,主要分为这么四大块儿: Buffer Pool、Change Buffer、Adaptive Hash Index、Log Buffer。 接下来介绍一下这四个部分。

1). Buffer Pool 缓冲池

InnoDB存储引擎基于磁盘文件存储,访问物理硬盘和在内存中进行访问,速度相差很大,为了尽可能弥补这两者之间的I/O效率的差值,就需要把经常使用的数据加载到缓冲池中,避免每次访问都进行磁盘I/O。

在InnoDB的缓冲池中不仅缓存了索引页和数据页,还包含了undo页、插入缓存、自适应哈希索引以及 InnoDB的锁信息等等。

缓冲池 Buffer Pool,是主内存中的一个区域,里面可以缓存磁盘上经常操作的真实数据,在执行增删改查操作时,先操作缓冲池中的数据(若缓冲池没有数据,则从磁盘加载并缓存),然后再以一定频率刷新到磁盘,从而减少磁盘IO,加快处理速度。

缓冲池以Page页为单位,底层采用链表数据结构管理Page。根据状态,将Page分为三种类型:

  • free page:空闲page链表,未被使用。

  • clean page:被使用page链表,数据没有被修改过。

  • dirty page:脏页,被使用page链表,数据被修改过,也中数据与磁盘的数据产生了不一致。

在专用服务器上,通常将多达80%的物理内存分配给缓冲池 。参数设置: show variables like 'innodb_buffer_pool_size';

af658493c59642d6b437add116e8d573.png

2). Change Buffer

Change Buffer,更改缓冲区(针对于非唯一二级索引页),在执行DML语句时,如果这些数据Page 没有在Buffer Pool中,不会直接操作磁盘,而会将数据变更存在更改缓冲区 Change Buffer 中,在未来数据被读取时,再将数据合并恢复到Buffer Pool中,再将合并后的数据刷新到磁盘中。

Change Buffer的意义是什么呢?

先来看一幅图,这个是二级索引的结构图:

d6fba464afeb4853aa89cf26acd1ba7b.png

对于聚集索引如主键索引,通常来说是按照主键顺序插入的,那么就会顺序操作磁盘IO。与聚集索引不同,二级索引通常是非唯一的,并且以相对随机的顺序插入二级索引。同样,删除和更新可能会影响索引树中不相邻的二级索引页,如果每一次都操作磁盘,会造成大量的磁盘IO,并且是随机的磁盘IO。有了 ChangeBuffer之后,不用每一次都操作磁盘IO,先去操作Change Buffer,再以一定频率同步到Buffer Pool,再刷新到磁盘当中。减少了磁盘IO,提高了效率。

3). Adaptive Hash Index

自适应hash索引,用于优化对Buffer Pool数据的查询。MySQL的innoDB引擎中虽然没有直接支持 hash索引,但是给我们提供了一个功能就是这个自适应hash索引。因为前面我们讲到过,hash索引在进行等值匹配时,一般性能是要高于B+树的,因为hash索引一般只需要一次IO即可,而B+树,可能需要几次匹配,所以hash索引的效率要高,但是hash索引又不适合做范围查询、模糊匹配等,只适合做等值匹配的操作。

InnoDB存储引擎会监控对表上各索引页的查询,如果观察到在特定的条件下hash索引可以提升速度, 则建立hash索引,称之为自适应hash索引。

自适应哈希索引,无需人工干预,是系统根据情况自动完成。

参数: adaptive_hash_index

4). Log Buffer

Log Buffer:日志缓冲区,用来保存要写入到磁盘中的log日志数据(redo log 、undo log), 默认大小为 16MB,日志缓冲区的日志会定期刷新到磁盘中。如果需要更新、插入或删除许多行的事务,增加日志缓冲区的大小可以节省磁盘 I/O。

参数:

innodb_log_buffer_size:缓冲区大小

innodb_flush_log_at_trx_commit:日志刷新到磁盘时机,取值主要包含以下三个:

  • 1: 日志在每次事务提交时写入并刷新到磁盘,默认值。

  • 0: 每秒将日志写入并刷新到磁盘一次。

  • 2: 日志在每次事务提交后写入,并每秒刷新到磁盘一次。

6457da18ea884f5ba67b62a090b90984.png

6.2.3 磁盘结构

接下来,再来看看InnoDB体系结构的右边部分,也就是磁盘结构:

30c945c22dde45e2892311e333e6d647.png

1). System Tablespace 系统表空间

系统表空间是更改缓冲区的存储区域。如果表是在系统表空间而不是每个表文件或通用表空间中创建的,它也可能包含表和索引数据。(在MySQL5.x版本中还包含InnoDB数据字典、undolog等)。

参数:innodb_data_file_path

29bd6da0d38e41e69816f65fb675056c.png

系统表空间,默认的文件名叫 ibdata1。

2). File-Per-Table Tablespaces 每个表文件空间

如果开启了innodb_file_per_table开关 ,则每个表的文件表空间包含单个InnoDB表的数据和索引 ,并存储在文件系统上的单个数据文件中。

开关参数:innodb_file_per_table ,该参数默认开启。

4b0ba5972e004a5cb64874a5b30681b4.png

那也就是说,我们每创建一个表,都会产生一个表空间文件,如图:

bea50ce52cde4d0ea5466221e92ffce7.png

3). General Tablespaces

通用表空间,需要通过 CREATE TABLESPACE 语法创建通用表空间,在创建表时,可以指定该表空间。

A. 创建表空间

CREATE TABLESPACE ts_name ADD DATAFILE 'file_name' ENGINE = engine_name;

0d89022ef23340bb9533e625ae7021b4.png

B. 创建表时指定表空间

CREATE TABLE xxx ... TABLESPACE ts_name;

92bde397e9264dde943f85001167b3c5.png

4). Undo Tablespaces

撤销表空间,MySQL实例在初始化时会自动创建两个默认的undo表空间(初始大小16M),用于存储 undo log日志。

5). Temporary Tablespaces

InnoDB 使用会话临时表空间和全局临时表空间。存储用户创建的临时表等数据。

6). Doublewrite Buffer Files

双写缓冲区,innoDB引擎将数据页从Buffer Pool刷新到磁盘前,先将数据页写入双写缓冲区文件中,便于系统异常时恢复数据。

670a993d94a247fb804c66e0ac10f9b5.png

7). Redo Log

重做日志,是用来实现事务的持久性。该日志文件由两部分组成:重做日志缓冲(redo log buffer)以及重做日志文件(redo log), 前者是在内存中,后者在磁盘中。当事务提交之后会把所有修改信息都会存到该日志中, 用于在刷新脏页到磁盘时,发生错误时, 进行数据恢复使用。

以循环方式写入重做日志文件,涉及两个文件:

c6b292498a27456f98b152a142d49b5a.png

前面我们介绍了InnoDB的内存结构,以及磁盘结构,那么内存中我们所更新的数据,又是如何到磁盘中的呢? 此时,就涉及到一组后台线程,接下来,就来介绍一些InnoDB中涉及到的后台线程。

55eb46b349fe48d69cf62e247c8d617d.png

6.2.4 后台线程

作用:将InnoDB存储引擎的缓冲池当中的数据在合适的时机刷新到磁盘文件当中。

c48fb2d09cf847b2a9127917851d7f15.png

在InnoDB的后台线程中,分为4类,分别是:Master Thread 、IO Thread、Purge Thread、 Page Cleaner Thread。

1). Master Thread

核心后台线程,负责调度其他线程,还负责将缓冲池中的数据异步刷新到磁盘中, 保持数据的一致性,还包括脏页的刷新、合并插入缓存、undo页的回收 。

2). IO Thread

在InnoDB存储引擎中大量使用了AIO来处理IO请求, 这样可以极大地提高数据库的性能,而IO Thread主要负责这些IO请求的回调。

线程类型默认个数职责
Read thread4负责读操作
Write thread4负责写操作
Log thread1负责将日志缓冲区刷新到磁盘
Insert buffer thread1负责将写缓冲区内容刷新到磁盘

我们可以通过以下的这条指令,查看到InnoDB的状态信息,其中就包含IO Thread信息。

show engine innodb status \G;

06101a0106c74033a12a48ded013516a.png

3). Purge Thread

主要用于回收事务已经提交了的undo log,在事务提交之后,undo log可能不用了,就用它来回收。

4). Page Cleaner Thread

协助 Master Thread 刷新脏页到磁盘的线程,它可以减轻 Master Thread 的工作压力,减少阻塞。

6.3 事务原理

6.3.1 事务基础

1). 事务

事务 是一组操作的集合,它是一个不可分割的工作单位,事务会把所有的操作作为一个整体一起向系 统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败。

2). 特性ACID

  • 原子性(Atomicity):事务是不可分割的最小操作单元,要么全部成功,要么全部失败。

  • 一致性(Consistency):事务完成时,必须使所有的数据都保持一致状态。

  • 隔离性(Isolation):数据库系统提供的隔离机制,保证事务在不受外部并发操作影响的独立环境下运行。

  • 持久性(Durability):事务一旦提交或回滚,它对数据库中的数据的改变就是永久的。

那实际上,我们研究事务的原理,就是研究MySQL的InnoDB引擎是如何保证事务的这四大特性的。

69569757066d42c8a2656a30a980d568.png

而对于这四大特性,实际上分为两个部分。 其中的原子性、一致性、持久化,实际上是由InnoDB中的两份日志来保证的,一份是redo log日志,一份是undo log日志。 而持久性是通过数据库的锁,加上MVCC来保证的。

0b37d0271a2d4688a6a168e7bb9a9075.png

我们在讲解事务原理的时候,主要就是来研究一下redolog,undolog以及MVCC。

6.3.2 redo log

重做日志,记录的是事务提交时数据页的物理修改,是用来实现事务的持久性。

该日志文件由两部分组成:重做日志缓冲(redo log buffer)以及重做日志文件(redo log file),前者是在内存中,后者在磁盘中。当事务提交之后会把所有修改信息都存到该日志文件中, 用于在刷新脏页到磁盘,发生错误时, 进行数据恢复使用。

如果没有redolog,可能会存在什么问题的?我们一起来分析一下。

我们知道,在InnoDB引擎中的内存结构中,主要的内存区域就是缓冲池,在缓冲池中缓存了很多的数据页。 当我们在一个事务中,执行多个增删改的操作时,InnoDB引擎会先操作缓冲池中的数据,如果缓冲区没有对应的数据,会通过后台线程将磁盘中的数据加载出来,存放在缓冲区中,然后将缓冲池中的数据修改,修改后的数据页我们称为脏页。 而脏页则会在一定的时机,通过后台线程刷新到磁盘 中,从而保证缓冲区与磁盘的数据一致。 而缓冲区的脏页数据并不是实时刷新的,而是一段时间之后将缓冲区的数据刷新到磁盘中,假如刷新到磁盘的过程出错了,而提示给用户事务提交成功,而数据却没有持久化下来,这就出现问题了,没有保证事务的持久性。

8b6cadd08acc402d8b9bb8fd240c4b86.png

那么,如何解决上述的问题呢? 在InnoDB中提供了一份日志 redo log,接下来我们再来分析一 下,通过redolog如何解决这个问题。

1dd6103ad4dc42d9b06ffe20ec10f37a.png

有了redolog之后,当对缓冲区的数据进行增删改之后,会首先将操作的数据页的变化,记录在redo log buffer中。在事务提交时,会将redo log buffer中的数据刷新到redo log磁盘文件中。 过一段时间之后,如果刷新缓冲区的脏页到磁盘时,发生错误,此时就可以借助于redo log进行数据恢复,这样就保证了事务的持久性。 而如果脏页成功刷新到磁盘或者涉及到的数据已经落盘,此时redolog就没有作用了,就可以删除了,所以存在的两个redolog文件是循环写的。

那为什么每一次提交事务,要刷新redo log 到磁盘中呢,而不是直接将buffer pool中的脏页刷新到磁盘呢 ?

因为在业务操作中,我们操作数据一般都是随机读写磁盘的,而不是顺序读写磁盘。 而redo log在 往磁盘文件中写入数据,由于是日志文件,所以都是顺序写的。顺序写的效率,要远大于随机写。 这种先写日志的方式,称之为 WAL(Write-Ahead Logging)。

6.3.3 undo log

回滚日志,用于记录数据被修改前的信息 , 作用包含两个 : 提供回滚(保证事务的原子性) 和 MVCC(多版本并发控制) 。

undo log和redo log记录物理日志不一样,它是逻辑日志。可以认为当delete一条记录时,undo log中会记录一条对应的insert记录,反之亦然,当update一条记录时,它记录一条对应相反的 update记录。当执行rollback时,就可以从undo log中的逻辑记录读取到相应的内容并进行回滚。

Undo log销毁:undo log在事务执行时产生,事务提交时,并不会立即删除undo log,因为这些日志可能还用于MVCC。

Undo log存储:undo log采用段的方式进行管理和记录,存放在前面介绍的 rollback segment 回滚段中,内部包含1024个undo log segment。

6.4 MVCC

高频面试考点

6.4.1 基本概念

1). 当前读

读取的是记录的最新版本,读取时还要保证其他并发事务不能修改当前记录,会对读取的记录进行加锁。对于我们日常的操作,如:select ... lock in share mode(共享锁),select ... for update、update、insert、delete(排他锁)都是一种当前读。

测试:

b62f826c5e0b498f84cff63fdc8d4151.png

在测试中我们可以看到,即使是在默认的RR隔离级别下,事务A中依然可以读取到事务B最新提交的内容,因为在查询语句后面加上了 lock in share mode 共享锁,此时是当前读操作。当然,当我们加排他锁的时候,也是当前读操作。

2). 快照读

简单的select(不加锁)就是快照读,快照读,读取的是记录数据的可见版本,有可能是历史数据,不加锁,是非阻塞读。

Read Committed:每次select,都生成一个快照读。

Repeatable Read:开启事务后第一个select语句才是快照读的地方。

Serializable:快照读会退化为当前读。

测试:

74ddffbaafa44ffb989a5acc223a8a28.png

在测试中,我们看到即使事务B提交了数据,事务A中也查询不到。 原因就是因为普通的select是快照读,而在当前默认的RR隔离级别下,开启事务后第一个select语句才是快照读的地方,后面执行相同 的select语句都是从快照中获取数据,可能不是当前的最新数据,这样也就保证了可重复读。

3). MVCC

全称 Multi-Version Concurrency Control,多版本并发控制。指维护一个数据的多个版本, 使得读写操作没有冲突,快照读为MySQL实现MVCC提供了一个非阻塞读功能。

MVCC作用:在快照读的时候要通过MVCC来查找对应的历史版本。

MVCC的具体实现,还需要依赖于数据库记录中的三个隐式字段、undo log日志、readView。

接下来,我们再来介绍一下InnoDB引擎的表中涉及到的隐藏字段 、undolog 以及 readview,从而来介绍一下MVCC的原理。

6.4.2 隐藏字段

dc7b08d0121e49aa9d7ff62b853f8c37.png

当我们创建了上面的这张表,我们在查看表结构的时候,就可以显式的看到这三个字段。 实际上除了这三个字段以外,InnoDB还会自动的给我们添加三个隐藏字段及其含义分别是:

隐藏字段含义
DB_TRX_ID最近修改事务ID,记录插入这条记录或最后一次修改该记录的事务ID。
DB_ROLL_PTR回滚指针,指向这条记录的上一个版本,用于配合undo log,指向上一个版 本。
DB_ROW_ID隐藏主键,如果表结构没有指定主键,将会生成该隐藏字段。

而上述的前两个字段是肯定会添加的, 是否添加最后一个字段DB_ROW_ID,得看当前表有没有主键, 如果有主键,则不会添加该隐藏字段。

6.4.3 undolog

6.4.3.1 介绍

回滚日志,在insert、update、delete的时候产生的便于数据回滚的日志。

当insert的时候,产生的undo log日志只在回滚时需要,在事务提交后,可被立即删除。

而update、delete的时候,产生的undo log日志不仅在回滚时需要,在快照读时也需要,不会立即被删除。

6.4.3.2 版本链

有一张表原始数据为:

cce79a66642a4385a88fac59d94707b6.png

DB_TRX_ID : 代表最近修改事务ID,记录插入这条记录或最后一次修改该记录的事务ID,是自增的。

DB_ROLL_PTR : 由于这条数据是才插入的,没有被更新过,所以该字段值为null。

然后,有四个并发事务同时在访问这张表。

A. 第一步

44be7a386c4c4669a704c733edaccb9b.png

当事务2执行第一条修改语句时,会记录undo log日志,记录数据变更之前的样子; 然后更新记录, 并且记录本次操作的事务ID,回滚指针,回滚指针用来指定如果发生回滚,回滚到哪一个版本。

a94bc53320d84a46827b4d94e175ca76.png

B.第二步

3072f9c4bfa2490c8cdb5eaf562dadf8.png

当事务3执行第一条修改语句时,也会记录undo log日志,记录数据变更之前的样子; 然后更新记录,并且记录本次操作的事务ID,回滚指针,回滚指针用来指定如果发生回滚,回滚到哪一个版本。

4821207908294683891f0fa6bf3b68f6.png

C. 第三步

ae59bac4ebdc43949d87d11b13b740f8.png

当事务4执行第一条修改语句时,也会记录undo log日志,记录数据变更之前的样子; 然后更新记录,并且记录本次操作的事务ID,回滚指针,回滚指针用来指定如果发生回滚,回滚到哪一个版本。

45072e0051fd42518e35f28ba31d3722.png

最终我们发现,不同事务或相同事务对同一条记录进行修改,会导致该记录的undolog生成一条记录版本链表,链表的头部是最新的旧记录,链表尾部是最早的旧记录。

6.4.4 readview

ReadView(读视图)是快照读SQL执行时MVCC提取数据的依据,记录并维护系统当前活跃的事务 (未提交的)id。

ReadView中包含了四个核心字段:

字段含义
m_ids当前活跃的事务ID集合
min_trx_id最小活跃事务ID
max_trx_id预分配事务ID,当前最大事务ID+1(因为事务ID是自增的)
creator_trx_idReadView创建者的事务ID

而在readview中就规定了版本链数据的访问规则:

trx_id 代表当前undolog版本链对应事务ID。

条件是否可以访问说明
trx_id == creator_trx_id可以访问该版本成立,说明数据是当前这个事务更改的。
trx_id < min_trx_id可以访问该版本成立,说明数据已经提交了。
trx_id > max_trx_id不可以访问该版本成立,说明该事务是在 ReadView生成后才开启。
min_trx_id <= trx_id <= max_trx_id如果trx_id不在m_ids中, 是可以访问该版本的成立,说明数据已经提交。

不同的隔离级别,生成ReadView的时机不同:

  • READ COMMITTED :在事务中每一次执行快照读时生成ReadView。

  • REPEATABLE READ:仅在事务中第一次执行快照读时生成ReadView,后续复用该ReadView。

6.4.5 原理分析

6.4.5.1 RC隔离级别

RC隔离级别下,在事务中每一次执行快照读时生成ReadView。

我们就来分析事务5中,两次快照读读取数据,是如何获取数据的?

在事务5中,查询了两次id为30的记录,由于隔离级别为Read Committed,所以每一次进行快照读 都会生成一个ReadView,那么两次生成的ReadView如下。

08a30638fcb14d6388ac99ac1ec8c82e.png

那么这两次快照读在获取数据时,就需要根据所生成的ReadView以及ReadView的版本链访问规则, 到undolog版本链中匹配数据,最终决定此次快照读返回的数据。

A. 先来看第一次快照读具体的读取过程:

d2c1cd67b13749329f789dd9cbd4b8a9.png

7fd6074359c142e5bf02cf88eb847b1a.png

B. 再来看第二次快照读具体的读取过程:

c01aa491200441b38a857cf424c79de7.png

6367141284cb4badb8df9d697dd99923.png

6.4.5.2 RR隔离级别

RR隔离级别下,仅在事务中第一次执行快照读时生成ReadView,后续复用该ReadView。 而RR 是可 重复读,在一个事务中,执行两次相同的select语句,查询到的结果是一样的。

那MySQL是如何做到可重复读的呢? 我们简单分析一下就知道了

d54f2e9d551a4c22a6828ac8ca16f5dd.png

我们看到,在RR隔离级别下,只是在事务中第一次快照读时生成ReadView,后续都是复用该 ReadView,那么既然ReadView都一样, ReadView的版本链匹配规则也一样, 那么最终快照读返 回的结果也是一样的。

所以呢,MVCC的实现原理就是通过 InnoDB表的隐藏字段、UndoLog 版本链、ReadView 来实现的。 而MVCC + 锁,则实现了事务的隔离性。 而一致性则是由redolog 与 undolog保证。

3d97ecf7924f4556a02a5e91eaf5fc45.png

总结:

23f44301fc3646cf86639dcd1fe7248d.png

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/14909.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

C#与C++交互开发系列(二十二):跨进程通信之使用基于HTTP协议的REST风格的API

1. 前言 REST API&#xff08;Representational State Transfer Application Programming Interface&#xff09;是一种基于HTTP协议的通信方式&#xff0c;广泛用于网络服务和分布式应用程序之间的通信。通过REST API&#xff0c;可以让C#和C应用程序进行跨进程、甚至跨平台的…

想让三维模型与实时视频融合?这款软件值得一试

视频融合&#xff0c;是指将视频数据投影到地理特征表面&#xff0c;并通过相应姿态参数控制投影效果的一种三维展示方式&#xff0c;实现了三维模型与实时视频的融合。 四维轻云是一款轻量化的地理空间数据管理云平台&#xff0c;支持地理空间数据的在线管理、编辑以及分享。…

汉化版WinHex和CFF Explorer下载及程序脱壳后修复,重建引入表,修改程序PE文件(附下载链接)

前言 现有一个加壳程序&#xff0c;要求对程序脱壳&#xff0c;需要修复脱壳后的程序 使用PEiD查壳&#xff0c;显示为NsPack 1.4 -> Liuxingping [Overlay] * 先定位程序的OEP&#xff0c;使用od打开程序&#xff0c;看到有压入栈的操作 进行查找&#xff0c;查找命令序列…

STM32F407简单驱动步进电机(标准库)

配置 单片机型号&#xff1a;STM32F104ZGT6 步进电机&#xff1a;YK28HB40-01A 驱动器&#xff1a;YKD2204M-Plus 接线方式&#xff1a; pu&#xff1a;接对应的产生PWM的引脚&#xff0c;这里接PF9&#xff0c;对应TIM14_CH1通道&#xff01; pu-&#xff1a;接单片机的G…

linux-DNS解析

dns解析 dns&#xff1a;域名系统&#xff0c;将域名和ip地址互相映射的一个分布式的数据库&#xff0c;方便用户访问互联网。 ip地址&#xff1a;是所有设备和网站在互联网上的唯一地址&#xff0c;通信一定是ip和ip之间的通信。 dns解析&#xff1a;根据域名在互联网当中找…

光伏电站容量计算方法科普

光伏电站的容量计算是设计和评估光伏系统性能的关键步骤。通过了解光伏电站的容量&#xff0c;我们可以预估其发电量&#xff0c;优化系统设计&#xff0c;并确保系统能满足电力需求。本文将详细介绍几种常见的光伏电站容量计算方法&#xff0c;并特别介绍小程序“光伏一点通”…

采集opc da 转 profinet IO项目案例

目录 1 案例说明 1 2 VFBOX网关工作原理 1 3 应用条件 2 4 查看OPC DA服务器的相关参数 2 5 配置网关采集opc da数据 4 6 用profinet IO协议转发数据 6 7 在服务器上运行仰科OPC DA采集软件 9 8 案例总结 11 1 案例说明 在OPC DA服务器上运行OPC DA client软件查看OPC DA服务…

循环矩阵和BCCB矩阵与向量乘积的快速计算——矩阵向量乘积与频域乘积之间的转换

目录 循环矩阵循环矩阵的定义特征值与特征向量循环矩阵的对角化 循环矩阵与向量的乘积 BCCB矩阵BCCB矩阵的定义BCCB矩阵的对角化BCCB 矩阵与向量的乘积BCCB 矩阵与向量乘积的实现 总结 循环矩阵&#xff08;Circulant Matrix&#xff09;和块循环对称矩阵&#xff08;Block Cir…

(动画版)排序算法 -希尔排序

文章目录 1. 希尔排序&#xff08;Shellsort&#xff09;1.1 简介1.2 希尔排序的步骤1.3 希尔排序的C实现1.4 时间复杂度1.5 空间复杂度1.6 希尔排序动画 1. 希尔排序&#xff08;Shellsort&#xff09; 1.1 简介 希尔排序&#xff08;Shells Sort&#xff09;&#xff0c;又…

蓝桥杯每日真题 - 第7天

题目&#xff1a;&#xff08;爬山&#xff09; 题目描述&#xff08;X届 C&C B组X题&#xff09; 解题思路&#xff1a; 前缀和构造&#xff1a;为了高效地计算子数组的和&#xff0c;我们可以先构造前缀和数组 a&#xff0c;其中 a[i] 表示从第 1 个元素到第 i 个元素的…

socketcan-goloang

模拟接收 模拟发送 package mainimport ("context""fmt""go.einride.tech/can""go.einride.tech/can/pkg/candevice""go.einride.tech/can/pkg/socketcan" )func main() {// linux系统设置// sudo ip link add dev can0 ty…

Java期末复习暨学校第五次上机课作业

Java期末复习暨学校第五次上机课作业&#xff1a;掌握类的定义、掌握类的封装、熟悉类的成员方法的调用。 第一题&#xff1a; 先定义两个整形变量x和y&#xff0c;然后showMessage方法打印防御塔的位置。 然后通过new关键字实例化了一个TowerDefense对象t1,并把x赋值为3&…

【目标检测】【Ultralytics-YOLO系列】Windows11下YOLOV5人脸目标检测

【目标检测】【Ultralytics-YOLO系列】Windows11下YOLOV5人脸目标检测 文章目录 【目标检测】【Ultralytics-YOLO系列】Windows11下YOLOV5人脸目标检测前言YOLOV5模型运行环境搭建YOLOV5模型运行数据集准备YOLOV5运行模型训练模型验证模型推理 总结 前言 Ultralytics YOLO 是一…

【启明智显分享】5G CPE与5G路由器到底有什么区别?

5G路由器和5G CPE在功能和应用场景上存在很明显的差异&#xff0c;小编做了详细比较&#xff0c;希望能帮助到你进一步了解他们的区别及应用。 一、定义与功能 5G路由器 5G路由器是一个将5G网络连接转换为Wi-Fi信号的设备&#xff0c;使多个Wi-Fi设备可以通过5G网络进行连接…

【go从零单排】File Paths文件路径

&#x1f308;Don’t worry , just coding! 内耗与overthinking只会削弱你的精力&#xff0c;虚度你的光阴&#xff0c;每天迈出一小步&#xff0c;回头时发现已经走了很远。 &#x1f4d7;概念 在 Go 中&#xff0c;处理文件路径通常使用 path/filepath 包。这个包提供了一系…

【数据分享】中国渔业统计年鉴(1979-2024) pdf

数据介绍 一、《中国渔业统计年鉴》以正式出版年份标序。其统计数据起讫日期:渔民家庭收支调查起讫时间为 2022年11月1日至2023年10月31日&#xff0c;其他数据起讫时间为2023年1月1日至2023年12月31日。 二、统计数据中&#xff0c;远洋渔业数据按照远洋渔业管理办法进行统计…

Windows10“大限”将至或加速政企信创进程

近日&#xff0c;微软公司正式宣布将于2025年10月14日终止对Windows 10系统的支持服务。Windows 10“退休”在即&#xff0c;信息安全风险陡增——对此&#xff0c;360织语的安全专家认为&#xff0c;对于政企用户而言&#xff0c;不管是选择继续使用Windows 10&#xff0c;还是…

文本嵌入方案大总结:从词向量到句向量

这里写目录标题 文本嵌入方案总结一、文本嵌入三种层次 词向量应用&#xff1a; 句向量应用&#xff1a; 扩展&#xff1a;文本嵌入和句子相似度、文本匹配的逻辑关系&#xff1f; 二、词向量有哪些方案、优缺点、工具&#xff1f;方案一&#xff1a;统计编码方案二&…

第23天Linux下常用工具(二)

目录 第四章 GDB调试工具 4.1gdb的作用 4.2调试代码的流程 4.3gdb的安装 4.4 gdb的使用 第五章 makefile工程管理工具 5.1makefile的作用 5.2makefile的运行 5.3make的安装 5.4makefile的编写方法 5.5makefile的语法 5.6makefile使用示例 第四章 GDB调试工具 4.1g…

ubuntu22.04与ubuntu24.10使用Remmina远程桌面共享

1. ubuntu22.04启用远程桌面共享 点击Remote Desktop,按下图设置 成功启用 2.ubuntu24.10远程桌面启用 选择远程桌面选项 启用远程桌面共享与远程控制 启用远程登陆