【MATLAB源码-第204期】基于matlab的语音降噪算法对比仿真,谱减法、维纳滤波法、自适应滤波法;参数可调。

操作环境:

MATLAB 2022a

1、算法描述

语音降噪技术的目的是改善语音信号的质量,通过减少或消除背景噪声,使得语音更清晰,便于听者理解或进一步的语音处理任务,如语音识别和语音通讯。在许多实际应用中,如移动通信、助听器、会议系统等,语音降噪算法起着至关重要的作用。以下将介绍三种常见的语音降噪算法:维纳滤波、自适应滤波和谱减法。

1. 维纳滤波
维纳滤波是一种经典的信号估计技术,其基本思想是在已知信号和噪声的统计特性的情况下,设计一个线性滤波器,使得滤波输出与期望信号之间的均方误差最小。维纳滤波器广泛应用于信号去噪、图像平滑和语音增强等领域。

在语音降噪的场景中,维纳滤波算法通常包括以下步骤:

噪声功率谱估计:在语音信号的前几帧中,通常假设只含有噪声(即未含语音的部分),通过对这部分数据进行分析,估计噪声的功率谱。
带噪语音功率谱估计:对整个带噪语音信号进行分帧处理,每一帧通过加窗(如汉明窗)后计算其功率谱。
先验信噪比估计:利用已估计的噪声功率谱和带噪语音的功率谱来估计先验信噪比。
谱增益计算:根据先验信噪比和后验信噪比计算每一帧的谱增益。谱增益用于调整带噪语音帧的幅度谱,以减少噪声的影响。
语音重建:使用谱增益调整过的带噪语音帧通过重叠相加和逆傅里叶变换得到时域的降噪语音信号。
维纳滤波的效果依赖于噪声和语音的统计模型的准确性,以及先验信噪比的准确估计。在非平稳噪声环境下,维纳滤波器可能需要适应性地更新其参数。

2. 自适应滤波
自适应滤波技术是一种动态调整其滤波器系数以最佳方式对抗输入信号变化的技术。在语音降噪中,自适应滤波器通过最小化输出误差信号的能量来调整其滤波器系数。常用的自适应滤波算法包括最小均方误差(LMS)算法和其变体。

自适应滤波算法的步骤包括:

初始化:设置滤波器长度、步长和初始权重。
误差计算:在每个时刻,根据当前的滤波器权重,计算预测的语音和实际语音之间的误差。
权重更新:根据误差信号更新滤波器的权重,以减少未来预测的误差。
迭代过程:重复误差计算和权重更新过程,直到滤波器收敛或达到预定的迭代次数。
自适应滤波通常用于处理具有未知或变化特性的信号,如动态环境中的语音通信。

3. 谱减法
谱减法是一种基于频域的语音增强技术,其核心思想是从带噪语音的幅度谱中减去估计的噪声幅度谱,以期减少噪声成分。这种方法简单直观,计算效率高,适用于实时语音通信系统。

谱减法的主要步骤如下:

噪声估计:在语音信号的非语音活动区间估计噪声的功率谱。
带噪语音的频域表示:将带噪语音信号进行帧分割,每帧通过加窗和傅里叶变换得到其频域表示。
谱减处理:对于每个频点,从带噪语音的幅度谱中减去估计的噪声幅度谱。
阈值处理:为避免引入语音失真,对结果进行阈值处理,消除负值。
重建语音信号:将处理后的频域信号通过逆傅里叶变换重建为时域信号,并通过适当的窗函数重叠相加处理。
谱减法虽然在实现上简单,但可能会引入音乐噪声(即算法产生的额外噪声成分),需要通过改进算法或结合其他技术来减轻这一问题。

总结
这三种语音降噪技术各有特点和应用场景。维纳滤波适用于统计特性已知的环境,自适应滤波适用于环境特性不断变化的场景,而谱减法适用于需要快速简便处理的应用。在实际应用中,经常会结合多种技术,以达到最佳的降噪效果。

2、仿真结果演示

3、关键代码展示

4、MATLAB 源码获取

点击下方原文链接获取

【MATLAB源码-第204期】基于matlab的语音降噪算法对比仿真,谱减法、维纳滤波法、自适应滤波法;参数可调。_维纳滤波中噪声功率谱估计的步骤-CSDN博客icon-default.png?t=O83Ahttps://blog.csdn.net/Koukesuki/article/details/138544552?ops_request_misc=%257B%2522request%255Fid%2522%253A%25229594975C-E6E0-43E8-A4B5-B5BD67D52E7B%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=9594975C-E6E0-43E8-A4B5-B5BD67D52E7B&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~rank_v31_ecpm-2-138544552-null-null.nonecase&utm_term=204&spm=1018.2226.3001.4450

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/7669.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

C语言 | Leetcode C语言题解之第542题01矩阵

题目: 题解: /*** Return an array of arrays of size *returnSize.* The sizes of the arrays are returned as *returnColumnSizes array.* Note: Both returned array and *columnSizes array must be malloced, assume caller calls free().*/ type…

[SWPUCTF 2022 新生赛]Power! 反序列化详细题解

知识点: PHP反序列化(执行顺序) 构造POP链 代码审计 题目主页: 输入框可以输入内容,习惯性先查看一下页面的源代码,收集信息 发现源码中有提示参数source 先不急,再看一下其他信息 是apache服务器,php版本为7.4.30 url传参 ?sourceindex.php 回显了index.php的源码 …

docker下迁移elasticsearch的问题与解决方案

欢迎来到我的博客,代码的世界里,每一行都是一个故事 🎏:你只管努力,剩下的交给时间 🏠 :小破站 docker下迁移elasticsearch的问题与解决方案 数据挂载报错解决权限问题节点故障 直接上图&#x…

Spark 的介绍与搭建:从理论到实践

目录 一、分布式的思想 (一)存储 (二)计算 二、Spark 简介 (一)发展历程 (二)Spark 能做什么? (三)spark 的组成部分 (四&…

Python GUI 编程:tkinter 初学者入门指南——微调框

在本教程中,将介绍如何创建 Tkinter Spinbox 微调框小部件。 Python 中 Tkinter 中的 Spinbox 小部件用于从指定的给定值范围内选择一个值。 此外,可以直接在 Spinbox 小组件中输入值,就像使用单行文本框小组件一样。 要创建 Spinbox 小部件…

人保财险(外包)面试分享

前言: 这是本月面的第三家公司,太难了兄弟们,外包都不好找了,临近年底,金九银十已经错过了,金三银四虽然存在,但按照这几年的行情,金九银十和金三银四其实已经是不复存在了&#xf…

Redis - 数据库管理

Redis 提供了⼏个⾯向Redis数据库的操作,分别是dbsize、select、flushdb、flushall命令, 本机将通过具体的使⽤常⻅介绍这些命令。 一、切换数据库 select dbIndex 许多关系型数据库,例如MySQL⽀持在⼀个实例下有多个数据库存在的&#…

大数据挖掘有哪些技术要点?

大数据挖掘的主要方法和技术有:分类、聚类、关联规则、回归分析、时间序列分析、文本挖掘、社交网络分析、可视化技术等。通过大数据挖掘,企业和研究机构能够从海量数据中提取有价值的信息和知识,促进决策优化和业务创新。 一、分类 分类是大…

Python小游戏23——捕鱼达人

首先,你需要安装Pygame库。如果你还没有安装,可以使用以下命令进行安装: 【bash】 pip install pygame 运行效果展示 接下来是示例代码: 【python】 import pygame import random # 初始化Pygame pygame.init() # 屏幕尺寸 SCREEN…

项目模块十七:HttpServer模块

一、项目模块设计思路 目的:实现HTTP服务器搭建 思想:设计请求路由表,记录请求方法与对应业务的处理函数映射关系。用户实现请求方法和处理函数添加到路由表,服务器只接受请求并调用用户的处理函数即可。 处理流程: …

GS-SLAM论文阅读--High-Fidelity SLAM Using Gaussian Splatting

前言 这篇文章是几个月之前的IROS2024了,之前忘记看了,但是最近看到,觉得有一些值得参考的部分,接下来仔细阅读一下。 文章目录 前言1.背景介绍2.关键内容2.1 建图2.2 跟踪2.3总体流程 3.文章贡献 1.背景介绍 3DGS的连续建图存在…

App渠道来源追踪方案全面分析(iOS/Android/鸿蒙)

一、App 渠道来源追踪概述 渠道来源统计/追踪,其原理都可以称之为归因,归因是用于判断用户在什么原因、什么时间、什么场景下载了 App,以及打通他们在激活 App 后进行的一系列操作(比如注册、付费、加购等)。 渠道来…

group_concat配置影响程序出bug

在 ThinkPHP 5 中,想要临时修改 MySQL 数据库的 group_concat_max_len 参数,可以使用 原生 SQL 执行 来修改该值。你可以通过 Db 类来执行 SQL 语句,从而修改会话(Session)级别的变量。 步骤 设置 group_concat_max_l…

物联网赋能的人工智能图像检测系统

一、引言 在数字化时代,物联网(IoT)技术已经成为我们生活中不可或缺的一部分,极大地优化了我们的交通出行和医疗服务。物联网的核心优势在于其卓越的连接能力,它能够构建和连接庞大的资源数据库,为智能化图…

【python笔记】os库中ctime、mtime和atime的区别

ctime Creation Time文件或目录的创建时间 返回秒级时间戳 os.path.getctime(file_path) os.stat(file_path).st_ctime 返回纳秒级时间戳 os.stat(file_path).st_ctime_ns mtime Modification Time文件或目录的最后修改时间 返回秒级时间戳 os.path.getmtime(file_path) os.sta…

3DE 知识工程 —— EKL 函数重用与功能扩展

目录 1、简介 2、EKL 函数重用 2.1 直接调用 2.2 本地库重用 2.3 全局库重用 3、EKL 功能扩展 1、简介 本文介绍两种方法以展示 EKL 更为强大的能力:一是重用 EKL 函数,二是使用 EKL 调用 VB Script 宏中的函数以扩展其功能。 2、EKL 函数重用…

【GESP】C++一级真题练习(202309)luogu-B3864,小明的幸运数

GESP一级真题练习。为2023年9月一级认证真题。应该是两道题中略难的一道。 题目题解详见:https://www.coderli.com/gesp-1-luogu-b3864/ 【GESP】C一级真题练习(202309)luogu-B3864,小明的幸运数 | OneCoderGESP一级真题练习。为2023年9月一级认证真题…

从0开始学习机器学习--Day18--评估模型

在很多时候,构建并优化完模型并不代表这个问题就被解决了。事实上,很多时候,在第一次优化结束并进行预测时,其与真实值之间的误差都会提醒你这个模型需要继续优化。那么,我们应该怎么优化它呢? 选择更多的…

【Hadoop】【hdfs】【大数据技术基础】实验二 熟悉常用的HDFS操作

实验二: 熟悉常用的HDFS操作 一、实验题目 熟悉常用的HDFS操作。 二、实验目的 (1) 理解HDFS在Hadoop体系结构中的角色; (2) 熟练使用HDFS操作常用的Shell命令; (3)…

SpringSecurity的使用

文章目录 原理使用自定义权限校验 主要类通过debug的方式查看security有哪些过滤器配置类UsernamePasswordAuthenticationFilterUserDetailsServiceExceptionTranslationFilter自定义认证和授权异常处理 FilterSecurityInterceptor权限校验创建拦截器获取用户权限并传递给secur…