Netty入门教程——认识Netty

Netty入门教程——认识Netty

什么是Netty?

Netty 是一个利用 Java 的高级网络的能力,隐藏其背后的复杂性而提供一个易于使用的 API 的客户端/服务器框架。
Netty 是一个广泛使用的 Java 网络编程框架(Netty 在 2011 年获得了Duke’s Choice Award,见https://www.java.net/dukeschoice/2011)。它活跃和成长于用户社区,像大型公司 Facebook 和 Instagram 以及流行 开源项目如 Infinispan, HornetQ, Vert.x, Apache Cassandra 和 Elasticsearch 等,都利用其强大的对于网络抽象的核心代码。

Netty和Tomcat有什么区别?

Netty和Tomcat最大的区别就在于通信协议,Tomcat是基于Http协议的,他的实质是一个基于http协议的web容器,但是Netty不一样,他能通过编程自定义各种协议,因为netty能够通过codec自己来编码/解码字节流,完成类似redis访问的功能,这就是netty和tomcat最大的不同。

有人说netty的性能就一定比tomcat性能高,其实不然,tomcat从6.x开始就支持了nio模式,并且后续还有APR模式——一种通过jni调用apache网络库的模式,相比于旧的bio模式,并发性能得到了很大提高,特别是APR模式,而netty是否比tomcat性能更高,则要取决于netty程序作者的技术实力了。

为什么Netty受欢迎?

如第一部分所述,netty是一款收到大公司青睐的框架,在我看来,netty能够受到青睐的原因有三:

  1. 并发高
  2. 传输快
  3. 封装好
Netty为什么并发高

Netty是一款基于NIO(Nonblocking I/O,非阻塞IO)开发的网络通信框架,对比于BIO(Blocking I/O,阻塞IO),他的并发性能得到了很大提高,两张图让你了解BIO和NIO的区别:

阻塞IO的通信方式

非阻塞IO的通信方式

从这两图可以看出,NIO的单线程能处理连接的数量比BIO要高出很多,而为什么单线程能处理更多的连接呢?原因就是图二中出现的 Selector
当一个连接建立之后,他有两个步骤要做,第一步是接收完客户端发过来的全部数据,第二步是服务端处理完请求业务之后返回response给客户端。NIO和BIO的区别主要是在第一步。
在BIO中,等待客户端发数据这个过程是阻塞的,这样就造成了一个线程只能处理一个请求的情况,而机器能支持的最大线程数是有限的,这就是为什么BIO不能支持高并发的原因。
而NIO中,当一个Socket建立好之后,Thread并不会阻塞去接受这个Socket,而是将这个请求交给Selector,Selector会不断的去遍历所有的Socket,一旦有一个Socket建立完成,他会通知Thread,然后Thread处理完数据再返回给客户端——这个过程是不阻塞的,这样就能让一个Thread处理更多的请求了。
下面两张图是基于BIO的处理流程和netty的处理流程,辅助你理解两种方式的差别:

BIO的处理流程

NIO的处理流程

除了BIO和NIO之外,还有一些其他的IO模型,下面这张图就表示了五种IO模型的处理流程:

五种常见的IO模型

  • BIO,同步阻塞IO,阻塞整个步骤,如果连接少,他的延迟是最低的,因为一个线程只处理一个连接,适用于少连接且延迟低的场景,比如说数据库连接。

  • NIO,同步非阻塞IO,阻塞业务处理但不阻塞数据接收,适用于高并发且处理简单的场景,比如聊天软件。

  • 多路复用IO,他的两个步骤处理是分开的,也就是说,一个连接可能他的数据接收是线程a完成的,数据处理是线程b完成的,他比BIO能处理更多请求。

  • 信号驱动IO,这种IO模型主要用在嵌入式开发,不参与讨论。

  • 异步IO,他的数据请求和数据处理都是异步的,数据请求一次返回一次,适用于长连接的业务场景。

以上摘自Linux IO模式及 select、poll、epoll详解

Netty为什么传输快

Netty的传输快其实也是依赖了NIO的一个特性——零拷贝。我们知道,Java的内存有堆内存、栈内存和字符串常量池等等,其中堆内存是占用内存空间最大的一块,也是Java对象存放的地方,一般我们的数据如果需要从IO读取到堆内存,中间需要经过Socket缓冲区,也就是说一个数据会被拷贝两次才能到达他的的终点,如果数据量大,就会造成不必要的资源浪费。
Netty针对这种情况,使用了NIO中的另一大特性——零拷贝,当他需要接收数据的时候,他会在堆内存之外开辟一块内存,数据就直接从IO读到了那块内存中去,在netty里面通过ByteBuf可以直接对这些数据进行直接操作,从而加快了传输速度。
下两图就介绍了两种拷贝方式的区别,摘自Linux 中的零拷贝技术,第 1 部分

传统数据拷贝

零拷贝

上文介绍的ByteBuf是Netty的一个重要概念,他是netty数据处理的容器,也是Netty封装好的一个重要体现,将在下一部分做详细介绍。

为什么说Netty封装好?

要说Netty为什么封装好,这种用文字是说不清的,直接上代码:

  • 阻塞I/O
public class PlainOioServer {     public void serve(int port) throws IOException {        final ServerSocket socket = new ServerSocket(port);     //1        try {            for (;;) {                final Socket clientSocket = socket.accept();    //2                System.out.println("Accepted connection from " + clientSocket);                 new Thread(new Runnable() {                        //3                    @Override                    public void run() {                        OutputStream out;                        try {                            out = clientSocket.getOutputStream();                            out.write("Hi!\r\n".getBytes(Charset.forName("UTF-8")));                            //4                            out.flush();                            clientSocket.close();                //5                         } catch (IOException e) {                            e.printStackTrace();                            try {                                clientSocket.close();                            } catch (IOException ex) {                                // ignore on close                            }                        }                    }                }).start();                                        //6            }        } catch (IOException e) {            e.printStackTrace();        }    }}
  • 非阻塞IO
public class PlainNioServer {    public void serve(int port) throws IOException {        ServerSocketChannel serverChannel = ServerSocketChannel.open();        serverChannel.configureBlocking(false);        ServerSocket ss = serverChannel.socket();        InetSocketAddress address = new InetSocketAddress(port);        ss.bind(address);                                            //1        Selector selector = Selector.open();                        //2        serverChannel.register(selector, SelectionKey.OP_ACCEPT);    //3        final ByteBuffer msg = ByteBuffer.wrap("Hi!\r\n".getBytes());        for (;;) {            try {                selector.select();                                    //4            } catch (IOException ex) {                ex.printStackTrace();                // handle exception                break;            }            Set<SelectionKey> readyKeys = selector.selectedKeys();    //5            Iterator<SelectionKey> iterator = readyKeys.iterator();            while (iterator.hasNext()) {                SelectionKey key = iterator.next();                iterator.remove();                try {                    if (key.isAcceptable()) {                //6                        ServerSocketChannel server =                                (ServerSocketChannel)key.channel();                        SocketChannel client = server.accept();                        client.configureBlocking(false);                        client.register(selector, SelectionKey.OP_WRITE |                                SelectionKey.OP_READ, msg.duplicate());    //7                        System.out.println(                                "Accepted connection from " + client);                    }                    if (key.isWritable()) {                //8                        SocketChannel client =                                (SocketChannel)key.channel();                        ByteBuffer buffer =                                (ByteBuffer)key.attachment();                        while (buffer.hasRemaining()) {                            if (client.write(buffer) == 0) {        //9                                break;                            }                        }                        client.close();                    //10                    }                } catch (IOException ex) {                    key.cancel();                    try {                        key.channel().close();                    } catch (IOException cex) {                        // 在关闭时忽略                    }                }            }        }    }}
  • Netty
public class NettyOioServer {     public void server(int port) throws Exception {        final ByteBuf buf = Unpooled.unreleasableBuffer(                Unpooled.copiedBuffer("Hi!\r\n", Charset.forName("UTF-8")));        EventLoopGroup group = new OioEventLoopGroup();        try {            ServerBootstrap b = new ServerBootstrap();        //1             b.group(group)                                    //2             .channel(OioServerSocketChannel.class)             .localAddress(new InetSocketAddress(port))             .childHandler(new ChannelInitializer<SocketChannel>() {//3                 @Override                 public void initChannel(SocketChannel ch)                      throws Exception {                     ch.pipeline().addLast(new ChannelInboundHandlerAdapter() {            //4                         @Override                         public void channelActive(ChannelHandlerContext ctx) throws Exception {                             ctx.writeAndFlush(buf.duplicate()).addListener(ChannelFutureListener.CLOSE);//5                         }                     });                 }             });            ChannelFuture f = b.bind().sync();  //6            f.channel().closeFuture().sync();        } finally {            group.shutdownGracefully().sync();        //7        }    }}

从代码量上来看,Netty就已经秒杀传统Socket编程了,但是这一部分博大精深,仅仅贴几个代码岂能说明问题,在这里给大家介绍一下Netty的一些重要概念,让大家更理解Netty。

  • Channel
    数据传输流,与channel相关的概念有以下四个,上一张图让你了解netty里面的Channel。

Channel一览

  • Channel,表示一个连接,可以理解为每一个请求,就是一个Channel。

  • ChannelHandler,核心处理业务就在这里,用于处理业务请求。

  • ChannelHandlerContext,用于传输业务数据。

  • ChannelPipeline,用于保存处理过程需要用到的ChannelHandler和ChannelHandlerContext。

  • ByteBuf
    ByteBuf是一个存储字节的容器,最大特点就是使用方便,它既有自己的读索引和写索引,方便你对整段字节缓存进行读写,也支持get/set,方便你对其中每一个字节进行读写,他的数据结构如下图所示:

ByteBuf数据结构

他有三种使用模式:

  1. Heap Buffer 堆缓冲区
    堆缓冲区是ByteBuf最常用的模式,他将数据存储在堆空间。

  2. Direct Buffer 直接缓冲区
    直接缓冲区是ByteBuf的另外一种常用模式,他的内存分配都不发生在堆,jdk1.4引入的nio的ByteBuffer类允许jvm通过本地方法调用分配内存,这样做有两个好处

  3. 通过免去中间交换的内存拷贝, 提升IO处理速度; 直接缓冲区的内容可以驻留在垃圾回收扫描的堆区以外。

  4. DirectBuffer 在 -XX:MaxDirectMemorySize=xxM大小限制下, 使用 Heap 之外的内存, GC对此”无能为力”,也就意味着规避了在高负载下频繁的GC过程对应用线程的中断影响.

  5. Composite Buffer 复合缓冲区
    复合缓冲区相当于多个不同ByteBuf的视图,这是netty提供的,jdk不提供这样的功能。

除此之外,他还提供一大堆api方便你使用,在这里我就不一一列出了,具体参见ByteBuf字节缓存。

  • Codec
    Netty中的编码/解码器,通过他你能完成字节与pojo、pojo与pojo的相互转换,从而达到自定义协议的目的。
    在Netty里面最有名的就是HttpRequestDecoder和HttpResponseEncoder了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/35763.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

调用大模型api 批量处理图像 保存到excel

最近需要调用大模型&#xff0c;并将结果保存到excel中&#xff0c;效果如下&#xff1a; 代码&#xff1a; import base64 from zhipuai import ZhipuAI import os import pandas as pd from openpyxl import Workbook from openpyxl.drawing.image import Image from io i…

Python基于TensorFlow实现BP和LSTM神经网络的空气质量预测并使用SHAP解释模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后关注获取。 1.项目背景 随着工业化进程的加速和城市化的扩展&#xff0c;空气污染成为全球面临的主要环境问题之一。空气质…

高效查找秘密武器一:位图

有这样的一个问题&#xff1a; 给40亿个不重复的无符号整数&#xff0c;没排过序。给一个无符号整数&#xff0c;如何快速判断一个数是否在这40亿个数 中。 那么我们一般会想到这样做的 1.遍历&#xff0c;时间复杂度O(n) 2.排序&#xff08;N*logN&#xff09;&#xff0c…

对于小型企业,独立站和电商平台哪个更经济?

对于小型企业来说&#xff0c;选择独立站还是电商平台&#xff0c;需要根据各自的成本优势来决定。以下是一些关键点的比较&#xff1a; 平台费用&#xff1a; 电商平台&#xff1a;通常需要缴纳一定比例的交易佣金或年费&#xff0c;例如天猫、京东等平台的保证金和佣金费用相…

带权并查集和扩展域并查集的一些整理和理解(上)

请读者在有一定并查集基础上再阅读&#xff08;至少要知道什么是带权和扩展域并查集&#xff09; 在最近做题时候&#xff0c;我遇到了一些带权并查集和扩展域并查集的题目。我觉得它们都很难写也很难想&#xff0c;尤其是带权并查集我几乎第一时间无法想到是怎么做的&#xf…

json+Tomact项目报错怎么办?

在响应请求的时候&#xff0c;如果http响应没有指定响应数据的content-type&#xff0c;浏览器就不知道按照什么格式解析响应体的数据&#xff0c;因为浏览器只知道怎样解析http的行和头&#xff0c;再从头里获取响应体的字节长度和类型&#xff0c;按照你给的长度去截流&#…

极限激光雷达点云数据集

https://arxiv.org/pdf/2307.07607v5 ‎ - AirLab 他们的数据集里面有这么多极限场景 点云数据转换 他们的激光用的velodyne,录制的格式是【velodyne_msgs/VelodyneScan】 需要把【velodyne_msgs/VelodyneScan】转化成【sensor_msgs/PointCloud2】 我编译https://github.co…

信奥常考点:二叉树的构建(已知中序和 前序或后序 的情况下)

一、题目引入 这是来自CCF-GESP C七级认证 2024年9月的题目。 我们在此不解题&#xff0c;只把树画出来。 CCF-GESP 编程能力认证 C 七级 2024年9月份详细解析-CSDN博客 二、解题过程 我们可以根据先序遍历得出根节点是A&#xff0c;然后我们得到了A的左子树[B D]&#xff08;橙…

电容的概念和基本参数

电容基本概念 电容最简单的结构可由两个相互靠近的导体平面中间夹一层绝缘介质组成&#xff0c;当在电容两个极板间加上电压时&#xff0c;电容就会储存电荷&#xff0c;所以电容是一个充放电荷的电子元器件。电容量是电容储存电荷多少的一个量值&#xff0c;平板电容的电容量…

【js逆向专题】13.jsvmp补环境篇一

目录 一.了解jsvmp技术1. js虚拟机保护方案2.jsvmp实现原理3. 模拟jsvmp执行过程 二.环境检测1. 什么是环境检测2.案例讲解 三. 项目实战1. 案例11.逆向目标2. 项目分析1.补第一个referrer2. 调试技巧13. 调试技巧24. 补充sign5. 补 length6. 参数长短补充 3. 逆向结果 2. 案例…

高质量翻译在美国推广移动应用中的重要性

美国的移动应用市场是世界上竞争最激烈、利润最高的市场之一&#xff0c;为开发者提供了接触数百万潜在用户的机会。然而&#xff0c;进入这个市场需要的不仅仅是创新技术或令人信服的想法&#xff1b;它要求与目标受众进行有效地沟通和文化契合。在这个过程中&#xff0c;高质…

[Redis#17] 主从复制 | 拓扑结构 | 复制原理 | 数据同步 | psync

目录 主从模式 主从复制作用 建立主从复制 主节点信息 从节点信息 断开主从复制关系 主从拓扑结构 主从复制原理 1. 复制过程 2. 数据同步&#xff08;PSYNC&#xff09; 3. 三种复制方式 一、全量复制 二、部分复制 三、实时复制 四、主从复制模式存在的问题 在…

【Unity高级】如何动态调整物体透明度

本文介绍了如何设置及动态调整物体的透明度。 一、手动设置的方法 我们先来看下如何手动设置物体的透明度。 物体的透明与否是通过材质来设置的。只有我们把具有透明度的材质指给物体的渲染器&#xff08;Render&#xff09;&#xff0c;物体就被设置成相应的透明度了。 看一…

相机动态/在线标定

图1 图2 基本原理 【原理1】平行线在射影变换后会交于一点。如图所示,A为相机光心,蓝色矩形框为归一化平面,O为平面中心。地面四条黄色直线为平行且等距的车道线。HI交其中两条车道线于H、I, 过G作HI的平行线GM交车道线于M。HI、GM在归一化平面上的投影分别为JK、PN,二者会…

通俗易懂理解:网络安全恶意节点的检测与哨兵节点的激活【论文+代码】

以下资料参考来自本文末尾的参考资料与代码&#xff1a; 在网络安全中&#xff0c;恶意节点检测和哨兵节点激活是确保网络稳定性、可靠性和安全性的关键技术&#xff0c;尤其是在分布式系统、物联网 (IoT)、区块链网络等环境中。下面将详细介绍这两个概念及其应用。 一、恶意…

python作业

1.D 2.B 3.D 4.C 5.B 6.D 7.D 8.B 9.D 10. A 11.D 12.C 13.√ 14.√ 16.√ 17.√ 18.None 19.([1,3],[2]) 20. 列表思维导图

Redis(上)

Redis 基础 什么是 Redis&#xff1f; Redis &#xff08;REmote DIctionary Server&#xff09;是一个基于 C 语言开发的开源 NoSQL 数据库&#xff08;BSD 许可&#xff09;。与传统数据库不同的是&#xff0c;Redis 的数据是保存在内存中的&#xff08;内存数据库&#xf…

LabVIEW气缸摩擦力测试系统

基于LabVIEW的气缸摩擦力测试系统实现了气缸在不同工作状态下摩擦力的快速、准确测试。系统由硬件平台和软件两大部分组成&#xff0c;具有高自动化、精确测量和用户友好等特点&#xff0c;可广泛应用于精密机械和自动化领域。 ​ 项目背景&#xff1a; 气缸作为舵机关键部件…

CentOS7.X 安装RustDesk自建服务器实现远程桌面控制

参照文章CentOS安装RustDesk自建服务器中间总有几个位置出错&#xff0c;经实践做个记录防止遗忘 一 环境&工具准备 1.1 阿里云轻量服务器、Centos7系统、目前最高1.1.11版本rustdesk-server-linux-amd64.zip 1.2 阿里云轻量服务器–安全组–开放端口&#xff1a;TCP(21…

工具篇:IDEA VFS 损害启动报错 com.intellij.util.io.CorruptedException 处理

文章目录 前言一、 idea 的 VFS是什么&#xff1f;二、解决方式&#xff1a;2.1 退出Idea 然后重新打开&#xff1a;2.2 手动清除Idea 缓存&#xff0c;让Idea 重新建立缓存&#xff1a;2.2.1 打开 Invalidate Caches / Restart 对话框:2.2.2 勾选要清除的缓存&#xff1a; 总结…