高效查找秘密武器一:位图

有这样的一个问题:

给40亿个不重复的无符号整数,没排过序。给一个无符号整数,如何快速判断一个数是否在这40亿个数 中。

那么我们一般会想到这样做的

1.遍历,时间复杂度O(n)

2.排序(N*logN),然后二分查找

那么此时此刻,我们再次细想一下,这些方法一般放在内存中进行的,那么40亿个不重复的无符号整数,有多大容量呢?

首先,10亿个字节大概是1个G

那么10亿个整数大约是4个G

然后呢40亿个整数大约是16个G

所以,如若这么大容量放到电脑内存上跑,恰好此时电脑内存也是16个G,那么不是刚刚好?

其实不然,电脑上不单单只是跑这个程序,后面还有很多,比如微信啊,爱奇艺什么的,所以一般来说,这么大容量放到16G的电脑内存是不太现实的。

那么还有什么解决办法呢?

那就请出今天的主角之一:位图

位图

那么什么又是位图呢?
这里说的位图指的是数据结构当中的,不是那个指图像那个位图哦!

位图:所谓的位图,就是用每一位来存放某种状态的。

适用于海量数据,整数,数据无重复的场景。通常用来判定某个数据存不存在的。

那么举个例子来看看

我这里,假设有了一个字节数组,然后有三个字节,那么一个字节呢,又对应8个比特位

一个比特位呢,又可以代表0/1两种状态。

所以数组arr中,每个数字可以通过某个算式来确定某个位置,然后将某个位置的比特位设置为1,说明,此数字存在。

比如,就11来说

11/8=1

那么我们就放到这个1下标

11%8=3

那么我们就在数组1下标下的第三个比特位设置为1,

然后可以说明数字是存在过的

这里值得注意下,为什么比特位标明的数字从右到左呢?

这里是为了方便,自己也是可以左到右的。

那么回过头细想一下,一个字节有8个比特位,且8个比特位都可以表示状态。

那么10亿个字节大概是0.9G,接近1G

10亿个比特位大概是119兆,看作128兆

那么40亿个比特位,那么就是可以看作512兆。

所以内存量一下子大大缩小了。

那么你看这个位图是不是很强大呢!

ok,那么接下来讲讲如何实现它吧。

由上述刚刚的例子可以看得出,底层还是一个数组来的,而且还是一个字节数组。

然后呢,我们创建它的时候,默认给定一个容量。

但是,有时候,需要用户指定它需要范围是多大,那么可以这样写。

  //位图底层还是一个数组public byte [] elem;//记录存放数据多少public int Usize;public MyBitMap(){//默认给定的数组大小是1个字节this.elem=new byte[1];}public MyBitMap(int n){this.elem=new byte[n/8+1];}

在给定参数的构造方法中,假设我们给定数字范围是10个,那么10/8=1,但是还余下两个,9 10

所以我们直接给多一个字节是可以的。set

那么接着讲讲set吧

set:

思路:

当然这是核心思路,然后代码实现方面还是需要考虑一些细节

比如,我们set方法,参数传入一个数字的话,如若数字给到的是<0的数字,那么此时是不符合我们位图的

再者如果是给定的数字,如若在找数组下标时超出数组范围,这时候也是需要处理的,比如扩容操作。

那么代码如下:

 public void set(int val){if(val<0){//需要抛出异常,因为会导致数组越界throw new IndexOutOfBoundsException();}//放到字节数组哪个位置int arrIndex=val/8;if(arrIndex>elem.length){//超出数组范围,进行扩容elem= Arrays.copyOf(elem,arrIndex+1);}//放到字节数组位置的哪个比特位int bitIndex=val%8;elem[arrIndex] |=(1<<bitIndex);Usize++;}

这个找哪个比特位进行修改,其实最开始时讲过了

即val/8=字节数组哪个下标,

val%8=下标内哪个比特位。

所以这里我们就可以找到,哪个字节哪个比特位要进行修改状态,比如举的例子,设置5这个数字

5/8=0,即在数组0下标

5%8=5,即在比特位第六个位置

get:

这个get方法是返回这个数字是否是存在过的。

所以呢,我们还得是找到这个数字在哪先,然后判断下这个数字的比特位是否是1

举例:

代码:
 

public boolean get(int val){if(val<0){throw new IndexOutOfBoundsException();}int arrIndex=val/8;int bitIndex=val%8;if((elem[arrIndex]&(1<<bitIndex))!=0){return true;}return false;}

reset:

reset方法呢,是把传入参数,对应的比特重新置为0

举例说明:

代码:

 public void reset(int val){if(val<0){throw new IndexOutOfBoundsException();}int arrIndex=val/8;int bitIndex=val%8;elem[arrIndex] &= ~(1<<bitIndex);Usize--;}public int getSize(){return Usize;}

值得注意的是,进行set的时候,Usize++了

所以写一个方法方法来返回当前设置的个数。

那么位图一些基本方法写完了,这里还差最后一个方法:排序

排序

其实我们位图是可以排序的

拿这里来说:

只要我们从右边开始,遍历当前比特位是1的就可以输出当前的值

那么判断当前位是不是为1,是get方法里的思路是一致的,用上&

那么如何输出当前的数字呢?

比如我要输出的是5,那么此时我们可以这样val=i*8+j

当前的i=0,因为我们输出的数字是5,在字节数组的0下标,当j从下标开始遍历,j=5时,就可以输出这个数字5了

代码:
 

 public static void main(String[] args) {int [] arr=new int[]{3,10,9,5,7,24,18};MyBitMap myBitMap=new MyBitMap(24);//先把数据放进字节数组中for(int i=0;i<arr.length;i++){myBitMap.set(arr[i]);}//排序for(int i=0;i< myBitMap.elem.length;i++){for(int j=0;j<8;j++){if((myBitMap.elem[i]&(1<<j))!=0){System.out.print(i*8+j+" ");}}}}

ok,那么位图这里,小编分享的差不多了。

顺带提一句,一开始给的那道题是腾讯曾经的面试题来的。

源码:

public class MyBitMap {//位图底层还是一个数组public byte [] elem;//记录存放数据多少public int Usize;public MyBitMap(){//默认给定的数组大小是1个字节this.elem=new byte[1];}public MyBitMap(int n){this.elem=new byte[n/8+1];}/*** set操作,对添加进来的数据置为1,即为存在的意思* @param val*/public void set(int val){if(val<0){//需要抛出异常,因为会导致数组越界throw new IndexOutOfBoundsException();}//放到字节数组哪个位置int arrIndex=val/8;if(arrIndex>elem.length){//超出数组范围,进行扩容elem= Arrays.copyOf(elem,arrIndex+1);}//放到字节数组位置的哪个比特位int bitIndex=val%8;elem[arrIndex] |=(1<<bitIndex);Usize++;}/*** get方法返回比特位是否设置过1* @param val* @return*/public boolean get(int val){if(val<0){throw new IndexOutOfBoundsException();}int arrIndex=val/8;int bitIndex=val%8;if((elem[arrIndex]&(1<<bitIndex))!=0){return true;}return false;}public void reset(int val){if(val<0){throw new IndexOutOfBoundsException();}int arrIndex=val/8;int bitIndex=val%8;elem[arrIndex] &= ~(1<<bitIndex);Usize--;}public int getSize(){return Usize;}public static void main(String[] args) {int [] arr=new int[]{3,10,9,5,7,24,18};MyBitMap myBitMap=new MyBitMap(24);//先把数据放进字节数组中for(int i=0;i<arr.length;i++){myBitMap.set(arr[i]);}//排序for(int i=0;i< myBitMap.elem.length;i++){for(int j=0;j<8;j++){if((myBitMap.elem[i]&(1<<j))!=0){System.out.print(i*8+j+" ");}}}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/35757.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

对于小型企业,独立站和电商平台哪个更经济?

对于小型企业来说&#xff0c;选择独立站还是电商平台&#xff0c;需要根据各自的成本优势来决定。以下是一些关键点的比较&#xff1a; 平台费用&#xff1a; 电商平台&#xff1a;通常需要缴纳一定比例的交易佣金或年费&#xff0c;例如天猫、京东等平台的保证金和佣金费用相…

带权并查集和扩展域并查集的一些整理和理解(上)

请读者在有一定并查集基础上再阅读&#xff08;至少要知道什么是带权和扩展域并查集&#xff09; 在最近做题时候&#xff0c;我遇到了一些带权并查集和扩展域并查集的题目。我觉得它们都很难写也很难想&#xff0c;尤其是带权并查集我几乎第一时间无法想到是怎么做的&#xf…

json+Tomact项目报错怎么办?

在响应请求的时候&#xff0c;如果http响应没有指定响应数据的content-type&#xff0c;浏览器就不知道按照什么格式解析响应体的数据&#xff0c;因为浏览器只知道怎样解析http的行和头&#xff0c;再从头里获取响应体的字节长度和类型&#xff0c;按照你给的长度去截流&#…

极限激光雷达点云数据集

https://arxiv.org/pdf/2307.07607v5 ‎ - AirLab 他们的数据集里面有这么多极限场景 点云数据转换 他们的激光用的velodyne,录制的格式是【velodyne_msgs/VelodyneScan】 需要把【velodyne_msgs/VelodyneScan】转化成【sensor_msgs/PointCloud2】 我编译https://github.co…

信奥常考点:二叉树的构建(已知中序和 前序或后序 的情况下)

一、题目引入 这是来自CCF-GESP C七级认证 2024年9月的题目。 我们在此不解题&#xff0c;只把树画出来。 CCF-GESP 编程能力认证 C 七级 2024年9月份详细解析-CSDN博客 二、解题过程 我们可以根据先序遍历得出根节点是A&#xff0c;然后我们得到了A的左子树[B D]&#xff08;橙…

电容的概念和基本参数

电容基本概念 电容最简单的结构可由两个相互靠近的导体平面中间夹一层绝缘介质组成&#xff0c;当在电容两个极板间加上电压时&#xff0c;电容就会储存电荷&#xff0c;所以电容是一个充放电荷的电子元器件。电容量是电容储存电荷多少的一个量值&#xff0c;平板电容的电容量…

【js逆向专题】13.jsvmp补环境篇一

目录 一.了解jsvmp技术1. js虚拟机保护方案2.jsvmp实现原理3. 模拟jsvmp执行过程 二.环境检测1. 什么是环境检测2.案例讲解 三. 项目实战1. 案例11.逆向目标2. 项目分析1.补第一个referrer2. 调试技巧13. 调试技巧24. 补充sign5. 补 length6. 参数长短补充 3. 逆向结果 2. 案例…

高质量翻译在美国推广移动应用中的重要性

美国的移动应用市场是世界上竞争最激烈、利润最高的市场之一&#xff0c;为开发者提供了接触数百万潜在用户的机会。然而&#xff0c;进入这个市场需要的不仅仅是创新技术或令人信服的想法&#xff1b;它要求与目标受众进行有效地沟通和文化契合。在这个过程中&#xff0c;高质…

[Redis#17] 主从复制 | 拓扑结构 | 复制原理 | 数据同步 | psync

目录 主从模式 主从复制作用 建立主从复制 主节点信息 从节点信息 断开主从复制关系 主从拓扑结构 主从复制原理 1. 复制过程 2. 数据同步&#xff08;PSYNC&#xff09; 3. 三种复制方式 一、全量复制 二、部分复制 三、实时复制 四、主从复制模式存在的问题 在…

【Unity高级】如何动态调整物体透明度

本文介绍了如何设置及动态调整物体的透明度。 一、手动设置的方法 我们先来看下如何手动设置物体的透明度。 物体的透明与否是通过材质来设置的。只有我们把具有透明度的材质指给物体的渲染器&#xff08;Render&#xff09;&#xff0c;物体就被设置成相应的透明度了。 看一…

相机动态/在线标定

图1 图2 基本原理 【原理1】平行线在射影变换后会交于一点。如图所示,A为相机光心,蓝色矩形框为归一化平面,O为平面中心。地面四条黄色直线为平行且等距的车道线。HI交其中两条车道线于H、I, 过G作HI的平行线GM交车道线于M。HI、GM在归一化平面上的投影分别为JK、PN,二者会…

通俗易懂理解:网络安全恶意节点的检测与哨兵节点的激活【论文+代码】

以下资料参考来自本文末尾的参考资料与代码&#xff1a; 在网络安全中&#xff0c;恶意节点检测和哨兵节点激活是确保网络稳定性、可靠性和安全性的关键技术&#xff0c;尤其是在分布式系统、物联网 (IoT)、区块链网络等环境中。下面将详细介绍这两个概念及其应用。 一、恶意…

python作业

1.D 2.B 3.D 4.C 5.B 6.D 7.D 8.B 9.D 10. A 11.D 12.C 13.√ 14.√ 16.√ 17.√ 18.None 19.([1,3],[2]) 20. 列表思维导图

Redis(上)

Redis 基础 什么是 Redis&#xff1f; Redis &#xff08;REmote DIctionary Server&#xff09;是一个基于 C 语言开发的开源 NoSQL 数据库&#xff08;BSD 许可&#xff09;。与传统数据库不同的是&#xff0c;Redis 的数据是保存在内存中的&#xff08;内存数据库&#xf…

LabVIEW气缸摩擦力测试系统

基于LabVIEW的气缸摩擦力测试系统实现了气缸在不同工作状态下摩擦力的快速、准确测试。系统由硬件平台和软件两大部分组成&#xff0c;具有高自动化、精确测量和用户友好等特点&#xff0c;可广泛应用于精密机械和自动化领域。 ​ 项目背景&#xff1a; 气缸作为舵机关键部件…

CentOS7.X 安装RustDesk自建服务器实现远程桌面控制

参照文章CentOS安装RustDesk自建服务器中间总有几个位置出错&#xff0c;经实践做个记录防止遗忘 一 环境&工具准备 1.1 阿里云轻量服务器、Centos7系统、目前最高1.1.11版本rustdesk-server-linux-amd64.zip 1.2 阿里云轻量服务器–安全组–开放端口&#xff1a;TCP(21…

工具篇:IDEA VFS 损害启动报错 com.intellij.util.io.CorruptedException 处理

文章目录 前言一、 idea 的 VFS是什么&#xff1f;二、解决方式&#xff1a;2.1 退出Idea 然后重新打开&#xff1a;2.2 手动清除Idea 缓存&#xff0c;让Idea 重新建立缓存&#xff1a;2.2.1 打开 Invalidate Caches / Restart 对话框:2.2.2 勾选要清除的缓存&#xff1a; 总结…

2.linux中调度kettle

一.准备转换&#xff0c;等会在linux中用 1.添加excel输入组件&#xff0c;并添加对应的文件 2.添加列拆分为多行组件 3.添加文本文件输出组件 4.保存转换 二.linux安装java 1.把jdk-8u144-linux-x64.tar.gz上传到linux的/lx目录下 2. 解压jdk包&#xff0c;然后配置环境变量…

第四节、电机定角度转动【51单片机-TB6600驱动器-步进电机教程】

摘要&#xff1a;本节介绍用电机转动角度计算步骤&#xff0c;从而控制步进电机转角 一、 计算过程 1.1 驱动器接收一个脉冲后&#xff0c;步进电机转动一步&#xff0c;根据驱动器设置的细分值 计算一个脉冲对应电机转动的角度step_x s t e p x s t e p X … … ① step_{x…

如何终身使用 100% 免费的服务器

作为开发人员,我们需要在云服务上运行和托管后端。有许多 BaaS(后端即服务)可用,但它们有一些限制。 如果我说我已经免费使用基于 Linux 的服务器超过 4-5 年了,那会怎样?是的,你没听错。我正在使用这台安装了 Ubuntu 20、24 GB RAM、4 个 CPU 和 200 GB 存储空间的 Lin…