文章目录
- 一、Pod基础概念
- pod的状态
- 容器(Container)生命周期
- pod创建容器的过程:
- 二、底层容器Pause
- 三、初始化容器(initcontainers)
- 四、Pod容器的分类
- 五、镜像拉取策略(image PullPolicy)
- 六、重启策略(restartPolicy)
- 七、资源限制
- 八、健康检查:又称为探针(Probe)
- 示例1:exec方式(根据/tmp/healthy存活来判断容器健康状态)
- 示例2:httpGet方式
- 示例3:tcpSocket方式
- 示例4:就绪检测
- 示例5:就绪检测2
- 启动、退出动作
一、Pod基础概念
Pod是kubernetes中最小的资源管理组件,Pod也是最小化运行容器化应用的资源对象。一个Pod代表着集群中运行的一个进程。kubernetes中其他大多数组件都是围绕着Pod来进行支撑和扩展Pod功能的,例如,用于管理Pod运行的StatefulSet和Deployment等控制器对象,用于暴露Pod应用的Service和Ingress对象,为Pod提供存储的PersistentVolume存储资源对象等。
通常把Pod分为两类:
●自主式Pod
这种Pod本身是不能自我修复的,当Pod被创建后(不论是由你直接创建还是被其他Controller),都会被Kuberentes调度到集群的Node上。直到Pod的进程终止、被删掉、因为缺少资源而被驱逐、或者Node故障之前这个Pod都会一直保持在那个Node上。Pod不会自愈。如果Pod运行的Node故障,或者是调度器本身故障,这个Pod就会被删除。同样的,如果Pod所在Node缺少资源或者Pod处于维护状态,Pod也会被驱逐。
●控制器管理的Pod
Kubernetes使用更高级的称为Controller的抽象层,来管理Pod实例。Controller可以创建和管理多个Pod,提供副本管理、滚动升级和集群级别的自愈能力。例如,如果一个Node故障,Controller就能自动将该节点上的Pod调度到其他健康的Node上。虽然可以直接使用Pod,但是在Kubernetes中通常是使用Controller来管理Pod的。
pod的状态
1、pending:pod已经被系统认可了,但是内部的container还没有创建出来。这里包含调度到node上的时间以及下载镜像的时间,会持续一小段时间。
2、Running:pod已经与node绑定了(调度成功),而且pod中所有的container已经创建出来,至少有一个容器在运行中,或者容器的进程正在启动或者重启状态。–这里需要注意pod虽然已经Running了,但是内部的container不一定完全可用。因此需要进一步检测container的状态。
3、Succeeded:这个状态很少出现,表明pod中的所有container已经成功的terminated了,而且不会再被拉起了。
4、Failed:pod中的所有容器都被terminated,至少一个container是非正常终止的。(退出的时候返回了一个非0的值或者是被系统直接终止)
5、unknown:由于某些原因pod的状态获取不到,有可能是由于通信问题。 一般情况下pod最常见的就是前两种状态。而且当Running的时候,需要进一步关注container的状态
容器(Container)生命周期
1、Waiting:启动到运行中间的一个等待状态。
2、Running:运行状态。
3、Terminated:终止状态。 如果没有任何异常的情况下,container应该会从Waiting状态变为Running状态,这时容器可用。
但如果长时间处于Waiting状态,container会有一个字段reason表明它所处的状态和原因,如果这个原因很容易能标识这个容器再也无法启动起来时,例如ContainerCannotRun,整个服务启动就会迅速返回。(这里是一个失败状态返回的特性,不详细阐述)
pod创建容器的过程:
1.收到kubectl命令
2.init初始化容器(串行运行)
3.创建容器成功后启动容器,通过就绪探针确认容器就绪,通过存活探针保持容器健康
4.Pod 运行成功
二、底层容器Pause
Pod资源中针对各容器提供网络命令空间等共享机制的是底层基础容器pause,基础容器(也可称为父容器)pause就是为了管理Pod容器间的共享操作,这个父容器需要能够准确地知道如何去创建共享运行环境的容器,还能管理这些容器的生命周期。为了实现这个父容器的构想,kubernetes中,用pause容器来作为一个Pod中所有容器的父容器。这个pause容器有两个核心的功能,一是它提供整个Pod的Linux命名空间的基础。二来启用PID命名空间,它在每个Pod中都作为PID为1进程(init进程),并回收僵尸进程。
1.网络
每个 Pod 都会被分配一个唯一的 IP 地址。Pod 中的所有容器共享网络空间,包括 IP 地址和端口。Pod 内部的容器可以使用 localhost 互相通信。Pod 中的容器与外界通信时,必须分配共享网络资源(例如使用宿主机的端口映射)。
2.存储
可以 Pod 指定多个共享的 Volume。Pod 中的所有容器都可以访问共享的 Volume。Volume 也可以用来持久化 Pod 中的存储资源,以防容器重启后文件丢失。
三、初始化容器(initcontainers)
Init容器必须在应用程序容器启动之前运行完成,而应用程序容器是并行运行的,所以Init容器能够提供了一种简单的阻塞或延迟应用容器的启动的方法。
●Init 容器可以包含一些安装过程中应用容器中不存在的实用工具或个性化代码。例如,没有必要仅为了在安装过程中使用类似 sed、 awk、 python 或 dig 这样的工具而去FROM 一个镜像来生成一个新的镜像。
●Init 容器可以安全地运行这些工具,避免这些工具导致应用镜像的安全性降低。
●应用镜像的创建者和部署者可以各自独立工作,而没有必要联合构建一个单独的应用镜像。
●Init 容器能以不同于Pod内应用容器的文件系统视图运行。因此,Init容器可具有访问 Secrets 的权限,而应用容器不能够访问。
●由于 Init 容器必须在应用容器启动之前运行完成,因此 Init 容器提供了一种机制来阻塞或延迟应用容器的启动,
直到满足了一组先决条件。一旦前置条件满足,Pod内的所有的应用容器会并行启动。
四、Pod容器的分类
1.基础容器Pause:
给pod中的容器提供网络和存储资源的共享
2.init容器:
阻塞或者延迟应用容器的启动,可以为应用容器提供运行的环境和工具
3.应用容器:
在串行执行的init容器执行成功后,并行执行,提供应用业务
特别说明:
●在Pod启动过程中,Init容器会按顺序在网络和数据卷初始化之后启动。每个容器必须在下一个容器启动之前成功退出。
●如果由于运行时或失败退出,将导致容器启动失败,它会根据Pod的restartPolicy指定的策略进行重试。然而,如果Pod的restartPolicy设置为Always,Init容器失败时会使用RestartPolicy策略。
●在所有的Init容器没有成功之前,Pod将不会变成Ready状态。Init容器的端口将不会在Service中进行聚集。正在初始化中的Pod处于Pending状态,但应该会将Initializing状态设置为true。
●如果Pod重启,所有Init容器必须重新执行。
●对Init容器spec的修改被限制在容器image字段,修改其他字段都不会生效。更改Init容器的image字段,等价于重启该Pod。
●Init容器具有应用容器的所有字段。除了readinessProbe,因为Init容器无法定义不同于完成(completion)的就绪(readiness)之外的其他状态。这会在验证过程中强制执行。
●在Pod中的每个app和Init容器的名称必须唯一;与任何其它容器共享同一个名称,会在验证时抛出错误。
五、镜像拉取策略(image PullPolicy)
Pod 的核心是运行容器,必须指定容器引擎,比如 Docker,启动容器时,需要拉取镜像,k8s 的镜像拉取策略可以由用户指定:
1、IfNotPresent:在镜像已经存在的情况下,kubelet 将不再去拉取镜像,仅当本地缺失时才从仓库中拉取,默认的镜像拉取策略
2、Always:每次创建 Pod 都会重新拉取一次镜像;
3、Never:Pod 不会主动拉取这个镜像,仅使用本地镜像。
注意:对于标签为“:latest”的镜像文件,其默认的镜像获取策略即为“Always”;而对于其他标签的镜像,其默认策略则为“IfNotPresent”。
六、重启策略(restartPolicy)
当 Pod 中的容器退出时通过节点上的 kubelet 重启容器。适用于 Pod 中的所有容器。
1、Always:当容器终止退出后,总是重启容器,默认策略
2、OnFailure:当容器异常退出(退出状态码非0)时,重启容器;正常退出则不重启容器
3、Never:当容器终止退出,从不重启容器。
#注意:K8S 中不支持重启 Pod 资源,只有删除重建
七、资源限制
当定义 Pod 时可以选择性地为每个容器设定所需要的资源数量。 最常见的可设定资源是 CPU 和内存大小,以及其他类型的资源。
当为 Pod 中的容器指定了 request 资源时,调度器就使用该信息来决定将 Pod 调度到哪个节点上。当还为容器指定了 limit 资源时,kubelet 就会确保运行的容器不会使用超出所设的 limit 资源量。kubelet 还会为容器预留所设的 request 资源量, 供该容器使用(request相当于容器使用的最小值,limit相当于最大值)。
如果给容器设置了内存的 limit 值,但未设置内存的 request 值,Kubernetes 会自动为其设置与内存 limit 相匹配的 request 值。 类似的,如果给容器设置了 CPU 的 limit 值但未设置 CPU 的 request 值,则 Kubernetes 自动为其设置 CPU 的 request 值 并使之与 CPU 的 limit 值匹配。
1.CPU 资源单位
CPU 资源的 request 和 limit 以 cpu 为单位。Kubernetes 中的一个 cpu 相当于1个 vCPU(1个超线程)。
Kubernetes 也支持带小数 CPU 的请求。spec.containers[].resources.requests.cpu 为 0.5 的容器能够获得一个 cpu 的 、一半 CPU 资源(类似于Cgroup对CPU资源的时间分片)。表达式 0.1 等价于表达式 100m(毫核),表示每 1000 毫秒内容器可以使用的 CPU 时间总量为 0.1*1000 毫秒。(0.1占用CPU资源的十分之一)
Kubernetes 不允许设置精度小于 1m 的 CPU 资源。
2.内存 资源单位
内存的 request 和 limit 以字节为单位。可以以整数表示,或者以10为底数的指数的单位(E、P、T、G、M、K)来表示, 或者以2为底数的指数的单位(Ei、Pi、Ti、Gi、Mi、Ki)来表示。
如:1KB = 10^3 = 1000,1MB = 10^6 = 1000000 = 1000KB,1GB = 10^9 = 1000000000 = 1000MB
1KiB = 2^10 = 1024,1MiB = 2^20 =1048576 = 1024KiB
Pod 和 容器 的资源请求和限制:
spec.containers[].resources.requests.cpu //定义创建容器时预分配的CPU资源
spec.containers[].resources.requests.memory //定义创建容器时预分配的内存资源
spec.containers[].resources.limits.cpu //定义 cpu 的资源上限
spec.containers[].resources.limits.memory //定义内存的资源上限
示例1:
apiVersion: v1
kind: Pod
metadata:name: zy-1
spec:containers:- name: webimage: nginxresources:requests:memory: "64Mi"cpu: "250m"limits:memory: "128Mi"cpu: "500m"- name: dbimage: mysqlenv:- name: MYSQL_ROOT_PASSWORDvalue: "1234"resources:requests:memory: "512Mi"cpu: "0.5"limits:memory: "1Gi"cpu: "1"
减少提供的内存和cpu资源,就会报OOM错误
kubectl describe nodes #查看占用的资源
八、健康检查:又称为探针(Probe)
探针的三种规则:
●livenessProbe :存活探针,判断容器是否运行正常,如果探测失败则杀掉容器,然后根据重启策略重启。
●readinessProbe :判断pod是否能够进入ready状态,探测失败会进入notready状态,并从service的endpoints中删除。
●startupProbe(这个1.17版本增加的):判断容器内的应用程序是否已启动,主要针对于不能确定具体启动时间的应用。如果配置了 startupProbe 探测,在则在 startupProbe 状态为 Success 之前,其他所有探针都处于无效状态,直到它成功后其他探针才起作用。 如果 startupProbe 失败,kubelet 将杀死容器,容器将根据 restartPolicy 来重启。如果容器没有配置 startupProbe, 则默认状态为 Success。
#注:以上规则可以同时定义。在readinessProbe检测成功之前,Pod的running状态是不会变成ready状态的。
Probe支持三种检查方法:
●exec :在容器内执行指定命令。如果命令退出时返回码为0则认为诊断成功。
●tcpSocket :对指定端口上的容器的IP地址进行TCP检查(三次握手)。如果端口打开,则诊断被认为是成功的。
●httpGet :对指定的端口和路径上的容器的IP地址执行HTTPGet请求。如果响应的状态码大于等于200且小于400,则诊断被认为是成功的
示例1:exec方式(根据/tmp/healthy存活来判断容器健康状态)
apiVersion: v1
kind: Pod
metadata:labels:test: livenessname: liveness-exec
spec:containers:- name: livenessimage: k8s.gcr.io/busyboxargs: - /bin/sh- -c- touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 60livenessProbe:exec:command:- cat- /tmp/healthyfailureThreshold: 1 initialDelaySeconds: 5periodSeconds: 5#initialDelaySeconds:指定 kubelet 在执行第一次探测前应该等待5秒,即第一次探测是在容器启动后的第6秒才开始执行。默认是 0 秒,最小值是 0。
#periodSeconds:指定了 kubelet 应该每 5 秒执行一次存活探测。默认是 10 秒。最小值是 1。
#failureThreshold: 当探测失败时,Kubernetes 将在放弃之前重试的次数。 存活探测情况下的放弃就意味着重新启动容器。就绪探测情况下的放弃 Pod 会被打上未就绪的标签。默认值是 3。最小值是 1。
#timeoutSeconds:探测的超时后等待多少秒。默认值是 1 秒。最小值是 1。(在 Kubernetes 1.20 版本之前,exec 探针会忽略 timeoutSeconds 探针会无限期地 持续运行,甚至可能超过所配置的限期,直到返回结果为止。)
可以看到 Pod 中只有一个容器。kubelet 在执行第一次探测前需要等待 5 秒,kubelet 会每 5 秒执行一次存活探测。kubelet 在容器内执行命令 cat /tmp/healthy 来进行探测。如果命令执行成功并且返回值为 0,kubelet 就会认为这个容器是健康存活的。 当到达第 31 秒时,这个命令返回非 0 值,kubelet 会杀死这个容器并重新启动它。
apiVersion: v1
kind: Pod
metadata:name: livenessnamespace: default
spec:containers:- name: liveness-execimage: nginximagePullPolicy: IfNotPresentcommand: ["/bin/sh","-c","touch /tmp/live ; sleep 30; rm -rf /tmp/live; sleep 3600"]livenessProbe:exec:command: ["test","-e","/tmp/live"]initialDelaySeconds: 1periodSeconds: 3failureThreshold: 2
因为探针查不到指定健康文件,所以容器重启
示例2:httpGet方式
apiVersion: v1
kind: Pod
metadata:name: liveness-httpgetnamespace: default
spec:containers:- name: liveness-httpget-containerimage: soscscs/myapp:v1imagePullPolicy: IfNotPresentports:- name: httpcontainerPort: 80livenessProbe:httpGet:port: httppath: /index.htmlinitialDelaySeconds: 1periodSeconds: 3timeoutSeconds: 10
存活探针会定期向容器发送 HTTP GET 请求,检查 /index.html 路径的响应。如果请求成功,探针认为容器健康;如果请求失败,探针认为容器不健康。根据 initialDelaySeconds 和 periodSeconds 的设置,探针将在容器启动后 1 秒开始检查,并且每 3 秒检查一次。如果探针请求超时或失败,根据 timeoutSeconds 的设置,探针将在 10 秒后超时。如果容器内的应用程序无法在指定路径上响应 HTTP GET 请求,探针将标记容器为不健康,Kubernetes 将根据重启策略尝试重启容器。
任何大于或等于 200 并且小于 400 的返回代码标示成功,其它返回代码都标示失败。
kubectl exec -it liveness-httpget sh
rm -rf /usr/share/nginx/html/index.html
删除探测的页面后,重启pod
示例3:tcpSocket方式
apiVersion: v1
kind: Pod
metadata:name: goproxylabels:app: goproxy
spec:containers:- name: goproxyimage: k8s.gcr.io/goproxy:0.1ports:- containerPort: 8080readinessProbe:tcpSocket:port: 8080initialDelaySeconds: 5periodSeconds: 10livenessProbe:tcpSocket:port: 8080initialDelaySeconds: 15periodSeconds: 20
这个例子同时使用 readinessProbe 和 livenessProbe 探测。kubelet 会在容器启动 5 秒后发送第一个 readinessProbe 探测。这会尝试连接 goproxy 容器的 8080 端口。如果探测成功,kubelet 将继续每隔 10 秒运行一次检测。除了 readinessProbe 探测,这个配置包括了一个 livenessProbe 探测。kubelet 会在容器启动 15 秒后进行第一次 livenessProbe 探测。就像 readinessProbe 探测一样,会尝试连接 goproxy 容器的 8080 端口。如果 livenessProbe 探测失败,这个容器会被重新启动。
示例4:就绪检测
apiVersion: v1
kind: Pod
metadata:name: readiness-httpgetnamespace: default
spec:containers:- name: readiness-httpget-containerimage: soscscs/myapp:v1imagePullPolicy: IfNotPresentports:- name: httpcontainerPort: 80readinessProbe:httpGet:port: 80path: /index1.htmlinitialDelaySeconds: 1periodSeconds: 3livenessProbe:httpGet:port: httppath: /index.htmlinitialDelaySeconds: 1periodSeconds: 3timeoutSeconds: 10
示例5:就绪检测2
创建三个nginx,pod,pod内容都一样(都健康检查80端口的index.html)
apiVersion: v1
kind: Pod
metadata:name: myapp1labels:app: myapp
spec:containers:- name: myappimage: soscscs/myapp:v1ports:- name: httpcontainerPort: 80readinessProbe:httpGet:port: 80path: /index.htmlinitialDelaySeconds: 5periodSeconds: 5timeoutSeconds: 10
---
apiVersion: v1
kind: Pod
metadata:name: myapp2labels:app: myapp
spec:containers:- name: myappimage: soscscs/myapp:v1ports:- name: httpcontainerPort: 80readinessProbe:httpGet:port: 80path: /index.htmlinitialDelaySeconds: 5periodSeconds: 5timeoutSeconds: 10
---
apiVersion: v1
kind: Pod
metadata:name: myapp3labels:app: myapp
spec:containers:- name: myappimage: soscscs/myapp:v1ports:- name: httpcontainerPort: 80readinessProbe:httpGet:port: 80path: /index.htmlinitialDelaySeconds: 5periodSeconds: 5timeoutSeconds: 10
---
apiVersion: v1
kind: Service
metadata:name: myapp
spec:selector:app: myapptype: ClusterIPports:- name: httpport: 80targetPort: 80
kubectl exec -it pod/myapp1 -- rm -rf /usr/share/nginx/html/index.html #删除其中一个pod的页面
readiness探测失败,Pod 无法进入READY状态,且端点控制器将从 endpoints 中剔除删除该 Pod 的 IP 地址
kubectl get pods,svc,endpoints -o wide
网络数量变为2
启动、退出动作
lifecycle 字段包含两个子字段:postStart(容器创建后) 和 preStop(容器创建前),它们允许你在容器生命周期的特定时刻执行特定的命令。
apiVersion: v1
kind: Pod
metadata:name: lifecycle-demo
spec:containers:- name: lifecycle-demo-containerimage: soscscs/myapp:v1lifecycle: #此为关键字段postStart:exec:command: ["/bin/sh", "-c", "echo Hello from the postStart handler >> /var/log/nginx/message"] preStop:exec:command: ["/bin/sh", "-c", "echo Hello from the poststop handler >> /var/log/nginx/message"]volumeMounts:- name: message-logmountPath: /var/log/nginx/readOnly: falseinitContainers:- name: init-myserviceimage: soscscs/myapp:v1command: ["/bin/sh", "-c", "echo 'Hello initContainers' >> /var/log/nginx/message"]volumeMounts:- name: message-logmountPath: /var/log/nginx/readOnly: falsevolumes:- name: message-loghostPath:path: /data/volumes/nginx/log/type: DirectoryOrCreate
kubectl exec -it lifecycle-demo -- cat /var/log/nginx/message
启动pod后,lifecycle里的命令执行
kubectl delete pod lifecycle-demo
关闭pod后,执行关闭后的命令