【Java多线程】单例模式(饿汉模式和懒汉模式)

目录

单例模式的定义:

饿汉式--单例模式

 定义:

案例: 

优缺点: 

懒汉式--单例模式:

定义:

1)懒汉式单例模式(非线程安全) 

2)线程安全的懒汉式单例模式 (synchronized )

3)双重检查锁定的懒汉式单例模式(线程安全) 


单例模式的定义:

  • 单例模式是一种设计模式,它确保一个类只有一个实例并提供一个全局访问点来访问这个实例。就好像在一个软件系统中,对于某些特定的资源或者对象,只需要一个就足够了,例如数据库连接池、配置文件管理器等。通过单例模式可以更好地控制这些对象的创建和访问,避免创建多个实例导致资源浪费或者数据不一致等问题。

单例模式能保证某个类在程序中只存在唯⼀⼀份实例,⽽不会创建出多个实例. 

要实现单例模式,通常需要做到以下几点

  1. 私有化构造函数,防止外部通过new关键字创建实例。
  2. 提供一个静态的私有变量来保存类的唯一实例。
  3. 提供一个公共的静态方法来获取类的唯一实例,如果实例不存在则创建它。

单例模式具体的实现⽅式有很多.最常⻅的是"饿汉"和"懒汉"两种.


饿汉式--单例模式

定义:

  • 在饿汉式单例模式中,“饿” 体现的是一种急切的状态。就好像一个很饿的人,在看到食物(这里类比于单例对象)的时候,会迫不及待地先把食物拿到手(创建单例对象)。在这个模式下,单例对象在类加载阶段就被创建出来,而不是等到真正需要使用这个对象的时候才去创建。这种方式比较急切,所以被称为 饿汉模式”。

案例: 

class Singleton {// 私有静态成员变量,在类加载时就初始化实例private static Singleton instance = new Singleton();// 私有构造函数,防止外部通过new关键字创建实例private Singleton() {}// 公共静态方法,用于获取单例实例public static Singleton getInstance() {return instance;}
}
- ** 类加载过程中的创建**
     - 在Java中,类加载是由类加载器(ClassLoader)完成的一个过程。当一个类被首次主动使用(例如创建这个类的实例、访问这个类的静态成员等情况)时,这个类就会被加载。对于上述的`Singleton`类,当`Singleton`类被加载时,`private static Singleton instance = new Singleton();`这行代码就会被执行。 因为类加载机制保证了一个类在一个Java程序中只会被加载一次(在正常情况下),所以`instance`对象也只会被创建一次
   - **访问控制保证单例性**
     - 构造函数`private Singleton()`是私有的。这是非常关键的一点,它防止了外部类通过`new`关键字来创建`Singleton`类的新实例。外部类只能通过`public static Singleton getInstance()`方法来获取单例对象,而这个方法每次返回的都是在类加载阶段就已经创建好的`instance`对象,从而保证了整个系统中 只有一个`Singleton`类的实例存在。

优缺点: 

**优点**
   1 **线程安全**
     - 由于单例对象是在类加载阶段就创建好的,而类加载过程在Java中是线程安全的(由Java虚拟机来保证)。所以在多线程环境下,这种方式可以保证多个线程访问`getInstance`方法时,获取到的都是同一个单例对象,不会出现多个线程创建多个实例的情况。
   2- **实现简单**
     - 从代码量和逻辑复杂度来看,饿汉式单例模式是比较简单的。只需要在类中定义一个私有静态变量并初始化,再提供一个公共静态方法来返回这个变量即可。这种简单的实现方式使得代码易于理解和维护。
**缺点**
   - **可能会造成资源浪费**
     - 如果单例对象的创建过程比较复杂,例如需要进行大量的初始化操作,如加载配置文件、建立网络连接等,并且这个单例对象在程序运行初期可能并不一定需要被使用。那么在类加载阶段就创建这个单例对象可能会导致资源的浪费。就好像提前准备了一顿丰盛的大餐(单例对象),但可能很长时间都没有人来吃(使用单例对象),而准备这顿大餐(创建单例对象)的过程又耗费了很多资源。


懒汉式--单例模式:

定义:

 在懒汉模式下,实例在第一次使用时才进行创建,因此称为“懒汉”,在需要被用的时候被创建,突出一个字“

1)懒汉式单例模式(非线程安全) 

public class LazySingleton {// 私有静态变量,用于存储单例对象private static LazySingleton instance;// 私有构造函数,防止外部通过new关键字创建新的实例private LazySingleton() {}// 公共的静态方法,用于获取单例对象public static LazySingleton getInstance() {if (instance == null) {// 如果实例还未创建,则创建一个新的实例instance = new LazySingleton();}return instance;}
}
  • 这种实现方式在单线程环境下是可以正常工作的。当第一次调用getInstance方法时,会检查instance是否为null。如果是null,就会创建一个LazySingleton类的实例并赋值给instance,然后返回这个实例。之后再调用getInstance方法时,因为instance已经不是null了,所以会直接返回已创建的实例。
  • 存在的问题
    • 在多线程环境下,这种实现方式是不安全的。假设两个线程同时调用getInstance方法,并且此时instancenull。这两个线程都会执行instance = new LazySingleton();这一行代码,从而创建出两个不同的LazySingleton实例,这就违背了单例模式的初衷。

2)线程安全的懒汉式单例模式 (synchronized )

public class ThreadSafeLazySingleton {private static ThreadSafeLazySingleton instance;private ThreadSafeLazySingleton() {}// 使用synchronized关键字修饰方法,保证在多线程环境下的线程安全public static synchronized ThreadSafeLazySingleton getInstance() {if (instance == null) {instance = new ThreadSafeLazySingleton();}return instance;}
}
  • 通过在getInstance方法上添加synchronized关键字,保证了在多线程环境下,同一时刻只有一个线程能够进入这个方法。当一个线程进入getInstance方法并发现instancenull时,它会创建一个新的实例。其他线程如果在这个时候也尝试调用getInstance方法,就会被阻塞,直到第一个线程完成实例的创建并返回。
  • 存在的问题
    • 这种方式虽然保证了线程安全,但是性能较差。因为每次调用getInstance方法都需要获取锁,即使实例已经创建完成,这种不必要的同步操作会在高并发场景下成为性能瓶颈。

3)双重检查锁定的懒汉式单例模式(线程安全) 

public class DoubleCheckedLockingSingleton {// 使用volatile关键字保证变量的可见性和禁止指令重排序private static volatile DoubleCheckedLockingSingleton instance;private DoubleCheckedLockingSingleton() {}public static DoubleCheckedLockingSingleton getInstance() {if (instance == null) {// 第一次检查,提高性能,避免不必要的同步操作synchronized (DoubleCheckedLockingSingleton.class) {if (instance == null) {// 第二次检查,确保在同步块内也不会创建多个实例instance = new DoubleCheckedLockingSingleton();}}}return instance;}
}
  • 首先,if (instance == null)这一检查在同步块外进行,这是第一次检查。如果instance已经不是null就可以直接返回实例,避免了进入同步块,从而提高了性能
  • 当第一次检查instancenull时,线程会进入同步块。在同步块内,又进行了一次if (instance == null)检查,这是第二次检查。这是为了防止在多个线程同时通过第一次检查后,只有一个线程能够进入同步块创建实例,其他线程在等待这个线程完成创建后,直接获取已创建的实例,而不会再次创建
  • 使用volatile关键字是非常关键的。在 Java 中,指令重排序可能会导致instance变量在没有完全初始化的情况下就被其他线程看到。volatile关键字可以保证变量的可见性,并且禁止指令重排序,确保了单例模式的正确性。

结语: 写博客不仅仅是为了分享学习经历,同时这也有利于我巩固知识点,总结该知识点,由于作者水平有限,对文章有任何问题的还请指出,接受大家的批评,让我改进。同时也希望读者们不吝啬你们的点赞+收藏+关注,你们的鼓励是我创作的最大动力! 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/14449.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

Maven 构建项目

Maven 是一个项目管理和构建工具,主要用于 Java 项目。它简化了项目的构建、依赖管理、报告生成、发布等一系列工作。 构建自动化:Maven 提供了一套标准化的构建生命周期,包括编译、测试、打包、部署等步骤,通过简单的命令就可以执…

在jquery里,使用$.each()函数循环数组,对象,dom的用法

介绍 $.each() 能遍历一维数组,多维数组,JSON对象,dom2元素。在开发中可以很高效的处理各种数据结构。前提,需要导入jquery 使用 遍历JSON对象 var objDemo {name: linda,age:12, desc: a girl};$.each(objDemo,function(i,va…

UniApp 应用、页面与组件的生命周期详解

UniApp 应用、页面与组件的生命周期详解 在uni-app中包含了 应用生命周期、页面生命周期、和组件生命周期&#xff08; Vue.js的&#xff09;函数。 应用生命周期 应用生命周期仅可在App.vue中监听&#xff0c;在其它页面监听无效。 <script>export default {onLaunc…

进程的创建/终止/等待/替换

目录 一、进程创建 &#xff08;一&#xff09;fork函数的概念 &#xff08;二&#xff09;fork函数示例 二、进程终止 &#xff08;一&#xff09;退出码的概念 &#xff08;二&#xff09;退出码的含义 &#xff08;三&#xff09;相关函数和指令 三、进程等待 &…

【c++丨STL】list的使用

&#x1f31f;&#x1f31f;作者主页&#xff1a;ephemerals__ &#x1f31f;&#x1f31f;所属专栏&#xff1a;C、STL 目录 前言 list简介 一、list的默认成员函数 构造函数(constructor) 析构函数 赋值重载 二、list的迭代器接口 迭代器的功能分类 三、list的容量…

CANoe导入CAN DataBase(DBC文件)

Canoe是一款用于汽车网络仿真和开发的工具&#xff0c;它支持导入DBC文件&#xff08;CAN Database文件&#xff09;以定义和配置CAN网络中的消息、信号和节点。 将DBC文件拷贝至我们的工程目录的DBC文件夹内&#xff0c;随后在Simulation Setup中右击DataBase&#xff0c;进…

nacos配置管理

1、增加依赖 <!--配置管理的依赖 --> <dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-starter-alibaba-nacos-config</artifactId><version>2.1.0.RELEASE</version> </dependency><de…

每日OJ题_牛客_奇数位丢弃_找规律/模拟_C++_Java

目录 牛客_奇数位丢弃_找规律/模拟 题目解析 C代码1模拟 C代码2找规律 Java代码找规律 牛客_奇数位丢弃_找规律/模拟 奇数位丢弃_牛客题霸_牛客网 描述&#xff1a; 对于一个由 0..n 的所有数按升序组成的序列&#xff0c;我们要进行一些筛选&#xff0c;每次我们丢弃去…

解决table下tr或td选中不生效的问题

目录 一、问题描述 1.首先我们来看一下代码结构 2.检查代码&#xff08;鼠标右键或按下F12&#xff09; 3.解决方案 一、问题描述 解决table下tr或td选中不生效&#xff0c;页面刷新无效果 1.首先我们来看一下代码结构 这里我们的结构是table标签下的tr&#xff0c;tr当…

学籍拍照助手,中小学新生学籍证件照电脑端拍照教程

新学期过半&#xff0c;许多中小学学籍管理员都忙碌起来&#xff0c;为孩子们准备学籍所需的证件照。传统的照相馆拍摄、向家长收集都存在一些弊端&#xff0c;下面就来介绍如何使用校园学籍拍照助手&#xff0c;更智能的完成学籍证件照的拍摄。 1. 准备工作在开始之前&#xf…

SE30 程序运行时间评估

日常执行报表的时候 可能会遇到报表反应时间太长 用户无法接受的情况&#xff0c;此时 作为IT同事 需要分析程序的运行时间&#xff0c;可以使用SAP标准事务码SE30. 1、选择运行时分析-测量-立即执行&#xff08;有些程序可能没有此按钮 需联系开发增加&#xff09; 2、以发…

T-Rex Label标注

这个是做大量数据集的时候用到的&#xff0c;但我觉得他比labelimg好用。 仙人指路✈trexlabel 基本标注 如果是从新开始的话就是 导入图片然后进行直接标注 如果是后期添加图片继续标注&#xff0c;选择你需要的数据集格式&#xff0c;导入即可。 如此&#xff0c;进去就…

部署zabbix遇到问题: cannot find a valid baseurl for repo:centos-sclo-rh/x86 64 怎么解决 ?

安装 Zabbix 前端包&#xff0c;提示cannot find a valid baseurl for repo&#xff1a;centos-sclo-rh/x86 64 安装zabbix前端包 # yum install zabbix-web-mysql-scl zabbix-apache-conf-scl 解决办法&#xff1a; 原因是&#xff1a;CentOS7的SCL源在2024年6月30日停止维护…

小程序+公众号统一账号unionid,实现pc+公众号+小程序统一身份

一、微信开放平台 注册开发者账号、绑定公众号、小程序 二、小程序端获取unionid 1获取code wx.login({success: res > {console.log("getCode", res.code)this.getOpenId(res.code)}}) 2通过code调用后台方法获取openid,unionid 小程序端 getOpenId: functi…

LeetCode【0037】解数独

本文目录 1 中文题目2 求解方法&#xff1a;递归回溯法2.1 方法思路2.2 Python代码2.3 复杂度分析 3 题目总结 1 中文题目 编写一个程序&#xff0c;通过填充空格来解决数独问题。数独的解法需 遵循如下规则&#xff1a; 数字 1-9 在每一行只能出现一次。数字 1-9 在每一列只…

零碎02-接口文档管理

目录 一、背景故事 二、解决方案分析 1. 静态文档方案 2. Swagger Springfox 3. Knife4j增强方案 三、示例 1. 添加依赖 2. 配置Knife4j 3. 创建knife4j配置类 4. 启动Spring Boot项目并访问接口文档 5. 使用示例 6. 测试和使用 四、总结 一、背景故事 酷乐是一名…

指标体系构建:如何设计北极星指标设计?

目录 1 北极星指标的作用 2 北极星指标设计标准 标准1 标准2 标准3 标准4 标准5 标准6 3 小结 1 北极星指标的作用 北极星指标是公司业务成功的关键指标&#xff0c;反映了公司为用户带来的价值&#xff0c;有以下3点作用&#xff1a; ● 像北极星一样&#xff0c…

三菱FX5UPLC以太网Socket通信功能Passive开放的程序示例

Passive开放的通信流程如下所示。 参数设置 示例程序中使用的参数设置如下所示。 [CPU模块】 导航窗口↔[参数]↔[模块型号]↔[模块参数]-[以太网端口]-[基本设置]-[对象设备连接配置设置]↔[详细设置]→[以太网配置(内置以太网端口)]画面 【以太网模块】 [导航]中「参数]→[模…

【MATLAB源码-第292期】基于matlab的4ASK调制解调窄带通信系统仿真,输出各节点波形图以及误码率曲线图。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 窄带通信系统是指带宽较小、频谱利用效率较低的通信系统。与宽带通信系统相比&#xff0c;窄带系统的特点是信号的带宽相对较窄&#xff0c;因此需要更精确的调制技术来实现有效的通信。在窄带通信中&#xff0c;常见的调制方…

【搜索结构】AVL树的学习与实现

目录 什么是AVL树 AVL树的定义 插入函数的实现 左单旋和右单旋 左右双旋与右左双旋 什么是AVL树 AVL树实际上就是二叉搜索树的一种变体&#xff0c;我们都知道二i叉搜索树可以将查找的时间复杂度提升到O(logn)&#xff0c;极大提升搜索效率。但是在极端情况下&#xff0c;当…