图文组合-pytorch实现

在图文组合任务中,常见的图文融合方式有多种,比如简单的拼接、加权求和、注意力机制、跨模态Transformer等。为了让图片充分补充文本的语义信息,我们可以使用一种简单且有效的图文融合方法,比如通过注意力机制。

我们可以让文本特征作为查询(Query),图片特征作为键(Key)和值(Value),通过注意力机制让文本特征从图片特征中获取信息。这样,图片特征就可以在文本的指导下为每个文本单词提供补充信息。

核心步骤:
图片特征扩展:由于图片特征是 [1, 768],而文本特征是 [8, 768],我们可以将图片特征扩展成与文本特征相同的形状 [8, 768]。
注意力机制:使用文本特征作为查询(Query),图片特征作为键(Key)和值(Value),计算注意力权重并融合特征。
融合输出:得到新的文本表示,它不仅包含原始文本的语义信息,还从图片中获取了相关的视觉信息。

import torch
import torch.nn as nnclass ImageTextFusion(nn.Module):def __init__(self, feature_dim, num_heads):super(ImageTextFusion, self).__init__()self.feature_dim = feature_dimself.text_proj = nn.Linear(feature_dim, feature_dim)   # 映射文本特征self.image_proj = nn.Linear(feature_dim, feature_dim)  # 映射图片特征self.attention = nn.MultiheadAttention(embed_dim=feature_dim, num_heads=num_heads)def forward(self, image_feat, text_feat):"""image_feat: 图片特征, shape [1, 768]text_feat: 文本特征, shape [8, 768]"""# 扩展图片特征到与文本特征相同的形状image_feat_expanded = image_feat.expand(text_feat.size(0), -1)  # [8, 768]# 映射特征image_feat_proj = self.image_proj(image_feat_expanded)  # [8, 768]text_feat_proj = self.text_proj(text_feat)  # [8, 768]# 将文本特征作为查询,图片特征作为键和值attn_output, attn_weights = self.attention(query=text_feat_proj.unsqueeze(1),  # [8, 1, 768]key=image_feat_proj.unsqueeze(1),   # [8, 1, 768]value=image_feat_proj.unsqueeze(1), # [8, 1, 768]need_weights=False)# 将输出重新变形回 [8, 768]fused_text_feat = attn_output.squeeze(1)  # [8, 768]return fused_text_feat# 示例输入
image_feat = torch.randn(1, 768)  # 图片特征
text_feat = torch.randn(8, 768)   # 文本特征# 初始化模型
fusion_model = ImageTextFusion(feature_dim=768, num_heads=8)# 前向传播
fused_output = fusion_model(image_feat, text_feat)print(fused_output.shape)  # 输出形状应为 [8, 768]

代码解析:
text_proj 和 image_proj:分别用于将文本特征和图片特征映射到相同的特征空间,以便进行特征融合。
MultiheadAttention:这是 PyTorch 提供的多头注意力机制。我们将文本特征作为 Query,图片特征作为 Key 和 Value,通过注意力机制,使得每个文本单词从图片特征中获取相关的信息。
image_feat.expand(text_feat.size(0), -1):扩展图片特征,使其与文本特征具有相同的形状 [8, 768]。
unsqueeze(1):将特征的维度增加一个维度,符合 MultiheadAttention 的输入格式。
squeeze(1):将多头注意力输出的维度恢复到 [8, 768]。

总结:
这种方法使用了注意力机制,让文本特征能够从图片特征中获取信息,从而实现图文融合。注意力机制的优势在于,它可以为每个文本单词动态地分配不同的图片信息。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/13603.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

基于Java+SpringBoot宠物管理系统

一、作品包含 源码数据库设计文档全套环境和工具资源部署教程 二、项目技术 前端技术:Html、Css、Js、Vue、Element-ui 数据库:MySQL 后端技术:Java、Spring Boot、MyBatis 三、运行环境 开发工具:IDEA/eclipse 数据库&…

PYNQ 框架 - 中断(INTR)驱动

目录 1. 简介 2. 分析 2.1 Block Design 2.2 AXI Timer 2.2.1 IP 基本信息 2.2.2 IP 地址空间 2.2.3 级联模式 2.2.4 生成/捕获模式 2.3 AXI Interrupt 2.3.1 IP 基本信息 2.3.2 IP 地址空间 2.3.3 相关概念 2.3.4 参数配置 2.3.5 中断确认寄存器 3. PYNQ 代码 …

使用runtime/pprof包进行Go程序性能调优的实战教程

使用runtime/pprof包进行Go程序性能调优的实战教程 引言基本概念什么是runtime/pprof使用场景 安装和设置环境要求导入runtime/pprof包 基本用法创建和启动一个新的profile停止和销毁一个profile CPU Profiling启动CPU profiling停止CPU profiling分析CPU profiling数据 内存Pr…

深度探秘 VGG 网络:从原理到应用的视觉传奇

VGG 网络的原理 一、整体架构 VGG(Visual Geometry Group)网络是一种深度卷积神经网络,其显著特点是简洁而高效的架构设计。VGG 网络主要由卷积层、池化层和全连接层组成。 卷积层: 如前所述,VGG 大量使用 的小卷积…

为什么我搞量化分析要特别关注行业产业链

因为看了这本书理论书。我都是用现成的理论来传串起来的。每一步都是背后都有现成的理论支持支撑。虽然看着简单,我这个工具策略参考了投资行为心理学。主要是为了我量身定做的。我也是刚刚研究的新手,碰到的很多问题很多人应该也碰到,就把这…

电商数据接口||淘宝|京东商品详情参数对比

淘宝/天猫获得淘宝商品详情 API 返回值说明 item_get-获得淘宝商品详情 taobao.item_get 公共参数 名称类型必须描述keyString是调用key(必须以GET方式拼接在URL中)secretString是调用密钥api_nameString是API接口名称(包括在请求地址中…

Spring Security 认证流程,长话简说

一、代码先行 1、设计模式 SpringSecurity 采用的是 责任链 的设计模式,是一堆过滤器链的组合,它有一条很长的过滤器链。 不过我们不需要去仔细了解每一个过滤器的含义和用法,只需要搞定以下几个问题即可:怎么登录、怎么校验账户、认证失败…

HTMLCSS 打造的酷炫菜单选项卡

效果演示 具有视觉吸引力的菜单选项 HTML <div class"card"><ul><li class"iso-pro"><span></span><span></span><span></span><a href""><svgviewBox"0 0 320 512&quo…

【linux】网络基础 ---- 传输层

1. UDP协议 &#xff08;一&#xff09;UDP协议端格式 注意&#xff1a; 16位UDP长度, 表示整个数据报(UDP首部UDP数据)的最大长度16位UDP检验和&#xff0c;能判断是否出现数据丢失等问题如果校验和出错, 就会直接丢弃 UDP报头本质上也是一个结构体&#xff1a; 操作系统内有…

软件包管理

软件安装 软件包管理器 APT&#xff08;Advanced Package Tool&#xff09;&#xff1a; 发行版&#xff1a;主要用于 Debian 及其衍生版&#xff08;如 Ubuntu&#xff09;。 常用命令&#xff1a; apt-get install &#xff1a;安装软件包。 apt-get update&#xff1a;更新…

[项目代码] YOLOv5 铁路工人安全帽安全背心识别 [目标检测]

YOLOv5是一种单阶段&#xff08;one-stage&#xff09;检测算法&#xff0c;它将目标检测问题转化为一个回归问题&#xff0c;能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法&#xff08;如Faster R-CNN&#xff09;&#xff0c;YOLOv5具有更高的…

Linux逻辑卷

文章目录 逻辑卷 &#x1f3e1;作者主页&#xff1a;点击&#xff01; &#x1f916;Linux专栏&#xff1a;点击&#xff01; ⏰️创作时间&#xff1a;2024年11月12日11点09分 逻辑卷 LVM逻辑卷管理是Linux环境中对磁盘分区进行管理的一种机制&#xff0c;建立在硬盘和分区之…

【设计模式】创建型设计模式-工厂模式的实现

工厂模式实现 定义例子UML类图理解Java代码实现总结 定义 工厂方法模式定义了一个接口用于创建对象&#xff0c;该模式由子类决定实例化哪个工厂类。该模式把类的实例化推迟到了子类。 例子 通过一个公共的类方法来管理画图对象的创建。 UML类图理解 Java代码实现 定义接口…

Spring Boot实战:编程训练系统开发手册

1系统概述 1.1 研究背景 随着计算机技术的发展以及计算机网络的逐渐普及&#xff0c;互联网成为人们查找信息的重要场所&#xff0c;二十一世纪是信息的时代&#xff0c;所以信息的管理显得特别重要。因此&#xff0c;使用计算机来管理编程训练系统的相关信息成为必然。开发合适…

方案丨车险保单OCR:3秒钟完成保单审核

在涉及车辆交易的各种情况下&#xff0c;记录和管理车险保单信息是一项必不可少的任务。然而&#xff0c;面对数量庞大的电子保单&#xff0c;传统的手工录入方式显得尤为低效——它不仅消耗大量时间&#xff0c;而且容易出现错误&#xff0c;这不仅影响了用户的满意度&#xf…

性能测试|JMeter接口与性能测试项目

前言 在软件开发和运维过程中&#xff0c;接口性能测试是一项至关重要的工作。JMeter作为一款开源的Java应用&#xff0c;被广泛用于进行各种性能测试&#xff0c;包括接口性能测试。本文将详细介绍如何使用JMeter进行接口性能测试的过程和步骤。 JMeter是Apache组织开发的基…

嵌入式硬件电子电路设计(五)MOS管详解(NMOS、PMOS、三极管跟mos管的区别)

引言&#xff1a;在我们的日常使用中&#xff0c;MOS就是个纯粹的电子开关&#xff0c;虽然MOS管也有放大作用&#xff0c;但是几乎用不到&#xff0c;只用它的开关作用&#xff0c;一般的电机驱动&#xff0c;开关电源&#xff0c;逆变器等大功率设备&#xff0c;全部使用MOS管…

如何优化开放数据湖仓一体的性能

数据湖仓一体架构由 Apache Hudi、Apache Iceberg 和 Delta Lake 等开放表格式提供支持&#xff0c;提供了一种开放且经济高效的方式来管理组织不断增长的数据和分析需求。它提供了在同一数据存储上运行并发事务的可靠性&#xff0c;从而提高了效率。数据湖仓一体支持关键功能&…

比较基因组分析

比较基因组分析&#xff08;Comparative Genomics Analysis&#xff09;是一门通过比较不同物种或个体的基因组序列来研究其相似性与差异性的科学方法。它有助于揭示物种间的进化关系、基因功能、生物适应性及潜在的疾病机制。近年来&#xff0c;随着高通量测序技术的发展&…

leetcode 148. 排序链表 中等

给你链表的头结点 head &#xff0c;请将其按 升序 排列并返回 排序后的链表 。 示例 1&#xff1a; 输入&#xff1a;head [4,2,1,3] 输出&#xff1a;[1,2,3,4] 示例 2&#xff1a; 输入&#xff1a;head [-1,5,3,4,0] 输出&#xff1a;[-1,0,3,4,5]示例 3&#xff1a; …