使用YOLOv9进行图像与视频检测

大家好,YOLOv9 与其前身v8一样,专注于识别和精确定位图像和视频中的对象。本文将介绍如何使用YOLOv9进行图像与视频检测,自动驾驶汽车、安全系统和高级图像搜索等应用在很大程度上依赖于此功能,YOLOv9 引入了比 YOLOv8 更令人印象深刻的创新点。

1.安装必要的库

pip install opencv-python ultralytics

2.导入库

import cv2
from ultralytics import YOLO

3.选择模型型号尺寸

model = YOLO("yolov9c.pt")

这里我们选择yolov9c.pt,大家可以选择不同的模型尺寸进行检测,并比较不同的型号并权衡它们各自的优缺点。

4.编写函数预测和检测图像和视频中的对象

def predict(chosen_model, img, classes=[], conf=0.5):if classes:results = chosen_model.predict(img, classes=classes, conf=conf)else:results = chosen_model.predict(img, conf=conf)return resultsdef predict_and_detect(chosen_model, img, classes=[], conf=0.5, rectangle_thickness=2, text_thickness=1):results = predict(chosen_model, img, classes, conf=conf)for result in results:for box in result.boxes:cv2.rectangle(img, (int(box.xyxy[0][0]), int(box.xyxy[0][1])),(int(box.xyxy[0][2]), int(box.xyxy[0][3])), (255, 0, 0), rectangle_thickness)cv2.putText(img, f"{result.names[int(box.cls[0])]}",(int(box.xyxy[0][0]), int(box.xyxy[0][1]) - 10),cv2.FONT_HERSHEY_PLAIN, 1, (255, 0, 0), text_thickness)return img, results

predict() 这个函数采用三个参数:

  • chosen_model :用于预测的训练模型

  • img :要进行预测的图像

  • classes :(可选)要将预测筛选到的类名列表

  • conf :(可选)要考虑的预测的最小置信度阈值

函数首先检查是否提供classes参数。如果是,则使用classes参数调用该chosen_model.predict() 方法,该参数仅将预测筛选为这些类。否则,将调用该 chosen_model.predict() 方法时不带 classes 参数,该参数将返回所有预测。

conf 参数用于筛选出置信度分数低于指定阈值的预测。这对于消除误报很有用。

该函数返回预测结果列表,其中每个结果都包含以下信息:

  • name :预测类的名称

  • conf :预测的置信度分数

  • box :预测对象的边界框

predict_and_detect() 函数采用与 predict() 函数相同的参数,但除了预测结果外,它还返回带注释的图像。

该函数首先调用该 predict() 函数以获取预测结果。然后,它循环访问预测结果,并在每个预测对象周围绘制一个边界框。预测类的名称也写在边界框上方。

该函数返回一个包含带注释的图像和预测结果的元组。

以下是这两个函数之间差异的摘要:

  • predict() 函数仅返回预测结果,而该 predict_and_detect() 函数还返回带注释的图像。

  • predict_and_detect() 函数是 predict() 函数的包装器,这意味着它在内部调用函数 predict()

5.使用 YOLOv9 检测图像

# read the image
image = cv2.imread("YourImagePath")
result_img, _ = predict_and_detect(model, image, classes=[], conf=0.5)

如果要检测特定类,只需在类列表classes中输入对象的 ID 号即可。

6.保存并绘制结果图像

cv2.imshow("Image", result_img)
cv2.imwrite("YourSavePath", result_img)
cv2.waitKey(0)

7.使用 YOLOv9 检测视频

video_path = r"YourVideoPath"
cap = cv2.VideoCapture(video_path)
while True:success, img = cap.read()if not success:breakresult_img, _ = predict_and_detect(model, img, classes=[], conf=0.5)cv2.imshow("Image", result_img)cv2.waitKey(1)

8.保存结果视频

# 定义保存函数
def create_video_writer(video_cap, output_filename):# grab the width, height, and fps of the frames in the video stream.frame_width = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH))frame_height = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))fps = int(video_cap.get(cv2.CAP_PROP_FPS))#初始化fourcc = cv2.VideoWriter_fourcc(*'MP4V')writer = cv2.VideoWriter(output_filename, fourcc, fps,(frame_width, frame_height))return writer

只需使用上面的函数和代码即可:

output_filename = "YourFilename"
writer = create_video_writer(cap, output_filename)video_path = r"YourVideoPath"
cap = cv2.VideoCapture(video_path)
while True:success, img = cap.read()if not success:breakresult_img, _ = predict_and_detect(model, img, classes=[], conf=0.5)writer.write(result_img)cv2.imshow("Image", result_img)cv2.waitKey(1)
writer.release()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/13205.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

Vue2+ElementUI:用计算属性实现搜索框功能

前言: 本文代码使用vue2element UI。 输入框搜索的功能,可以在前端通过计算属性过滤实现,也可以调用后端写好的接口。本文介绍的是通过计算属性对表格数据实时过滤,后附完整代码,代码中提供的是死数据,可…

JAVA学习日记(十二)查找算法

一、基本查找、二分查找 略 二、分块查找 将数组分块,每一个块中最大值小于后一个块中的最小值:块内无序,块间有序。 块:创建一个块类 按照规则划分好块之后,对要查询的值设计方法进行查询。 import java.util.…

多线程小知识

一. CAS CAS (Compare and Swap, 比较并交换) 是一种无锁编程技术, 用于实现多线程环境下对共享资源的线程安全访问. CAS 的核心思想是: 只有当内存中的值与预期值相匹配时, 才会将内存中的值更新为新值. 寄存器1中存放原值, 寄存器2中存放新值. 现在要将内存中的原值更新为新…

C++基础(12.红黑树实现)

目录 红黑树的概念: 红黑树规则: 红黑树如何确保最长路径不超过最短路径的2倍的? 红黑树的效率: 红黑树的插入: 红黑树树插入⼀个值的大概过程: 情况1:变色 情况2:单旋变色: 情况3&…

代码随想录算法训练营第二十天|39. 组合总和、40.组合总和II、131.分割回文串

39. 组合总和 题目链接:. - 力扣(LeetCode) 文章讲解:代码随想录 视频讲解:带你学透回溯算法-组合总和(对应「leetcode」力扣题目:39.组合总和)| 回溯法精讲!_哔哩哔哩…

机器学习基础02_特征工程

目录 一、概念 二、API 三、DictVectorize字典列表特征提取 四、CountVectorize文本特征提取 五、TF-IDF文本1特征词的重要程度特征提取 六、无量纲化预处理 1、MinMaxScaler 归一化 2、StandardScaler 标准化 七、特征降维 1、特征选择 VarianceThreshold 底方差…

得物App入选诚信案例,10万正品样品库夯实高品质消费

近日,以“加强企业诚信建设 赋能经济社会发展”为主题的“2024年全国企业诚信建设大会”在烟台市召开。此次大会由中国企业联合会、中国企业家协会主办,山东省企业联合会、山东省企业家协会、烟台市企业联合会、烟台大学承办。大会期间,得物A…

036 RabbitMQ消息确认 死信队列 延时队列

文章目录 生产者确认模式application.propertiesMessageController.javaMessageConfirmRallback.java 生产者回退模式application.propertiesMessageConfirmRallback.javaMessageController.java 消费者手动确认application.propertiesConsumerAckQueueListener.java 死信队列延…

docker desktop运行rabittmq容器,控制台无法访问

docker desktop运行rabittmq容器,控制台无法访问 启动过程:…此处缺略,网上一大堆 原因 原因是在Docker上运行的RabbitMQ,默认情况下是没有启用管理插件和管理页面的 解决办法 使用命令 docker exec -it 容器id /bin/bash 进…

Tailwind 安装使用

Tailwind 安装使用 前言 CSS原子化——本文将详细介绍如何在Vue Vite npm环境下安装、配置并使用Tailwind CSS! 文章目录 Tailwind 安装使用前言一、Tailwind 在 Vue Vite 项目中的安装1. 创建Vue项目2. 安装Tailwind CSS3. 初始化Tailwind配置4. 修改文件 tai…

centos7安装playwright踩坑记录

Python版本安装 Installation | Playwright Python 1. 安装pytest-playwright pip3 install pytest-playwright报错:提示找不到pytest-playwright 原因:服务器Python版本3.6.8太低,貌似pytest-playwright最低支持3.7 解决方法&#xff1…

函数(C语言)

1:函数的概念 函数的概念我们在初中的时候就已经听过了。 在C语言中也引入了函数,也可以叫子程序 C语言中的函数就是一个完成某项特定的任务的一小段代码 这段代码是有特殊的写法和调用方法的。其实C语言的程序也是由无数个小的函数组成的。 也就是&…

VMWare安装包及安装过程

虚拟机基本使用 检查自己是否开启虚拟化 如果虚拟化没有开启,需要自行开启:百度加上自己电脑的品牌型号,进入BIOS界面开启 什么是虚拟机 所谓的虚拟机,就是在当前计算机系统中,又开启了一个虚拟系统 这个虚拟系统&…

基于SVD奇异值分解的图像压缩算法(Python实现)

前言 SVD其实和PCA类似,就是丢入一个特征矩阵 X ,输出另外一个特征矩阵 X′ , X′ 的维度要比原来的X 要低。并且里面的变量都是原来的变量的线性组合,所以含义也变得不好解释。 简单来说就是数据压缩,特征降维的一种技术&#…

国产AI图片工具,全部免费亲测实用!

近AI生图功能火出圈了,各家大厂都拿出了看家本领,今天就来聊聊即梦AI、通义万相、奇域AI和腾讯元宝的AI生图功能,看看它们各有什么特色吧! 一、Dreamina 字节旗下的AI智能平台,简单实用的图片生成,对中国元…

C++ 二叉搜索树

二叉搜索树的概念 二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树: 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值 它的左右…

推荐一款3D建模软件:Agisoft Metashape Pro

Agisoft Metashape Pro是一款强大的多视点三维建模设计辅助软件,Agisoft Metashape是一款独立的软件产品,可对数字图像进行摄影测量处理,并生成3D空间数据,用于GIS应用,文化遗产文档和视觉效果制作,以及间接…

IntelliJ+SpringBoot项目实战(四)--快速上手数据库开发

对于新手学习SpringBoot开发,可能最急迫的事情就是尽快掌握数据库的开发。目前数据库开发主要流行使用Mybatis和Mybatis Plus,不过这2个框架对于新手而言需要一定的时间掌握,如果快速上手数据库开发,可以先按照本文介绍的方式使用JdbcTemplat…

Linux高阶——1110—线程安全问题解决方法

1、同步、异步、阻塞、非阻塞 同步过程:发起调用,调用者需要等待被调用者的结果 异步过程:发起调用,无需等待被调用的结果,当有结果后,此结果传出,无需主动获取 阻塞和非阻塞:发起…

STM32cubemx+Proteus仿真和keil5联合调试

前面两步 STM32cubemx生成代码 https://blog.csdn.net/weixin_52733843/article/details/143637304 Proteus新建工程 https://blog.csdn.net/weixin_52733843/article/details/143578853 1 *Proteus仿真联合调试* 在Proteus中,双击STM32F103C6芯片&#xff0c…