光流法与直接法在SLAM中的应用

本文总结视觉SLAM中常用的光流法与直接法

1、Lucas-Kanade光流法

相机所拍摄到的图像随相机视角的变化而变化,这种变化也可以理解为图像中像素的反向移动。“光流”(Optical Flow)是指通过分析连续图像帧来估计场景中像素或特征点的运动的技术,即根据连续的两张图片和已知某个固定的空间点在 t t t时刻对应的的像素坐标 q \mathbf{q} q,估计其他时刻该空间点对应的像素坐标 p \mathbf{p} p光流法常用算法为LK光流法

在这里插入图片描述

LK光流法常用算法为常用的光流法,在LK光流法中,认为图像中每个像素坐标 [ u , v ] T [u,v]^{T} [u,v]T处的灰度都是随时间 t t t变化的函数,且做如下两条假设:

  1. 灰度不变假设:同一空间点对应的像素坐标的灰度值,在各个图像中是不变的
  2. 局部运动一致假设:相邻区域内的像素具有相同的运动
1.1、解析解法

设对应于同一空间点的像素随时间变化的函数为 ( u ( t ) , v ( t ) ) (u(t),v(t)) (u(t),v(t)),根据灰度不变假设,存在固定灰度值 C C C,有
I ( u ( t ) , v ( t ) , t ) = C (1) I(u(t),v(t),t)=C\tag{1} I(u(t),v(t),t)=C(1)
在上式中,对 t t t求导得到
∂ I ∂ u ∂ u ∂ t + ∂ I ∂ v ∂ v ∂ t + ∂ I ∂ t = 0 (2) \frac{\partial{I}}{\partial{u}}\frac{\partial{u}}{\partial{t}}+\frac{\partial{I}}{\partial{v}}\frac{\partial{v}}{\partial{t}}+\frac{\partial{I}}{\partial{t}}=0\tag{2} uItu+vItv+tI=0(2)
∇ t u = ∂ u ∂ t , ∇ t v = ∂ v ∂ t \nabla_{t}u=\frac{\partial{u}}{\partial{t}},\nabla_{t}v=\frac{\partial{v}}{\partial{t}} tu=tu,tv=tv x x x轴, y y y轴方向上的像素移动速度,这两个量也是LK光流法的求解目标, ∇ u I = ∂ I ∂ u , ∇ v I = ∂ I ∂ v \nabla_{u}I=\frac{\partial{I}}{\partial{u}},\nabla_{v}I=\frac{\partial{I}}{\partial{v}} uI=uI,vI=vI为灰度在 x , y x,y x,y方向上的梯度,也可称为像素梯度, ∇ t I = ∂ I ∂ t \nabla_{t}I=\frac{\partial{I}}{\partial{t}} tI=tI为固定点处灰度对时间的导数

( 2 ) (2) (2)可以化简为
[ ∇ u I , ∇ v I ] [ ∇ t u ∇ t v ] = − ∇ t I (3) [\nabla_{u}I,\nabla_{v}I]\begin{bmatrix}\nabla_{t}u\\\nabla_{t}v\end{bmatrix}=-\nabla_{t}I\tag{3} [uI,vI][tutv]=tI(3)
w = [ ∇ t u ∇ t v ] \mathbf{w}=\begin{bmatrix}\nabla_{t}u\\\nabla_{t}v\end{bmatrix} w=[tutv],上式是一个二元一次方程,仅靠该方程无法计算 w \mathbf{w} w,还需引入其他约束。

根据局部运动一致假设,可以认为像素 q i \mathbf{q}_{i} qi附近的某邻域内全部像素 q j , j = 1 , ⋯ , w \mathbf{q}_{j},j=1,\cdots,w qj,j=1,,w Δ t \Delta{t} Δt时间段内具有相同的运动,因此 ( 3 ) (3) (3)可以写成
[ ∇ u I 1 ( q 1 ) , ∇ v I 1 ( q 1 ) ⋮ ∇ u I 1 ( q w ) , ∇ v I 1 ( q w ) ] w = [ − ∇ t I ( q 1 ) ⋮ − ∇ t I ( q w ) ] (4) \begin{bmatrix}\nabla_{u} I_{1}(\mathbf{q}_{1}),\nabla_{v} I_{1}(\mathbf{q}_{1})\\\vdots\\ \nabla_{u} I_{1}(\mathbf{q}_{w}),\nabla_{v} I_{1}(\mathbf{q}_{w})\end{bmatrix}\mathbf{w}=\begin{bmatrix}-\nabla_{t}I(\mathbf{q}_{1})\\\vdots\\-\nabla_{t}I(\mathbf{q}_{w})\end{bmatrix}\tag{4} uI1(q1),vI1(q1)uI1(qw),vI1(qw)w=tI(q1)tI(qw)(4)
其中
KaTeX parse error: No such environment: align* at position 8: \begin{̲a̲l̲i̲g̲n̲*̲}̲ \nabla_{u} I_{…
( 4 ) (4) (4)中系数矩阵为 A \mathbf{A} A,等号右侧矩阵为 b \mathbf{b} b,则方程变为
A w = b \mathbf{A}\mathbf{w}=\mathbf{b} Aw=b
上式是关于 w \mathbf{w} w的超定方程组,可以通过最小二乘的方式求解,即令
w ∗ = arg ⁡ min ⁡ w ∥ A w − b ∥ 2 (6) \mathbf{w}^{\ast}=\underset{\mathbf{w}}{\arg\min}\,\|\mathbf{A}\mathbf{w}-\mathbf{b}\|^{2}\tag{6} w=wargminAwb2(6)
根据§1,容易求出 w ∗ \mathbf{w}^{\ast} w,根据 q i + w ∗ Δ t \mathbf{q}_{i}+\mathbf{w}^{\ast}\Delta{t} qi+wΔt即可计算新像素位置

1.2、优化解法

通过最小化两张图像对应像素邻域内的灰度差也可以求出给定点 q \mathbf{q} q在第二张图像中的对应像素 p \mathbf{p} p,即
KaTeX parse error: No such environment: align* at position 8: \begin{̲a̲l̲i̲g̲n̲*̲}̲ \mathbf{p}^{\a…
e j \mathbf{e}_{j} ej p \mathbf{p} p的雅可比矩阵为
J j = ∂ e j ∂ p = [ − ∇ u I 2 ( p j ) − ∇ v I 2 ( p j ) ] (8) \mathbf{J}_{j}=\frac{\partial\mathbf{e}_{j}}{\partial\mathbf{p}}=\begin{bmatrix}-\nabla_{u}I_{2}(\mathbf{p}_{j})\\ -\nabla_{v}I_{2}(\mathbf{p}_{j})\end{bmatrix}\tag{8} Jj=pej=[uI2(pj)vI2(pj)](8)
再求出
H k = ∑ j = 1 w J j J j T b k = ∑ j = 1 w J j T e j \mathbf{H}_{k}=\sum_{j=1}^{w}\mathbf{J}_{j}\mathbf{J}_{j}^{T}\quad\quad \mathbf{b}_{k}=\sum_{j=1}^{w}\mathbf{J}^{T}_{j}\mathbf{e}_{j} Hk=j=1wJjJjTbk=j=1wJjTej
增量方程为如下式,可以通过增量方程计算更新量
H k Δ p k = − b k \mathbf{H}_{k}\Delta\mathbf{p}_{k}=-\mathbf{b}_{k} HkΔpk=bk
得到更新量后,第二张图片中像素坐标可以更新为
p k + 1 = p k + Δ p k \mathbf{p}_{k+1}=\mathbf{p}_{k}+\Delta\mathbf{p}_{k} pk+1=pk+Δpk

2、直接法

在这里插入图片描述

直接法并不单独估计第二张图片中的像素点位置,而是对第一张图片中的像素点,根据相机位姿估计值寻找其在第二张图片中对应的像素位置,并通过图片中对应像素的灰度差不断优化相机位姿变换,得到最优位姿变换,同时使两张图片的灰度差最小。下面进行详细说明。

已知像素 q i , i = 1 , ⋯ , n \mathbf{q}_{i},i=1,\cdots,n qi,i=1,,n和其对应的深度,及摄像机内参矩阵
K = [ f x 0 c x 0 f y c y 0 0 1 ] \mathbf{K}=\left[\begin{array}{ccc} f_{x}&0&c_{x}\\ 0&f_{y}&c_{y}\\ 0&0&1 \end{array}\right] K=fx000fy0cxcy1
可以还原出三维空间位置 x i \mathbf{x}_{i} xi,令 X i = [ x i 1 ] ∈ R 4 \mathbf{X}_{i}=\begin{bmatrix}\mathbf{x}_{i}\\1\end{bmatrix}\in\mathbb{R}^{4} Xi=[xi1]R4,并记从第一张图片到第二张图片对应的相机位姿变换为 T ∈ S E ( 3 ) \mathbf{T}\in SE(3) TSE(3),则 x i \mathbf{x}_{i} xi在第二个相机坐标系下的空间坐标为
y i = ( T X i ) 1 : 3 = [ X , Y , Z ] T \mathbf{y}_{i}=(\mathbf{T}\mathbf{X}_{i})_{1:3}=[X,Y,Z]^{T} yi=(TXi)1:3=[X,Y,Z]T
对应的像素坐标为
p i = 1 Z ( K y i ) 1 : 2 \mathbf{p}_{i}=\frac{1}{Z}(\mathbf{K}\mathbf{y}_{i})_{1:2} pi=Z1(Kyi)1:2
直接法求解优化问题
KaTeX parse error: No such environment: align* at position 8: \begin{̲a̲l̲i̲g̲n̲*̲}̲ \mathbf{T}^{\a…
暂时省略下标,根据链式求导法则得到
KaTeX parse error: No such environment: align* at position 8: \begin{̲a̲l̲i̲g̲n̲*̲}̲ \frac{\partial…
容易得到
∂ p ∂ y = [ f x Z 0 − f x X Z 2 0 f y Z − f x Y Z 2 ] ∂ y ∂ T = [ I , − y ∧ ] \frac{\partial{\mathbf{p}}}{\partial\mathbf{y}}=\begin{bmatrix} \frac{f_{x}}{Z}&0&-\frac{f_{x}X}{Z^{2}}\\ 0&\frac{f_{y}}{Z}&-\frac{f_{x}Y}{Z^{2}} \end{bmatrix}\quad\quad\frac{\partial\mathbf{y}}{\partial\mathbf{T}}=[\mathbf{I},-\mathbf{y}^{\wedge}] yp=[Zfx00ZfyZ2fxXZ2fxY]Ty=[I,y]
因此 ( 10 ) (10) (10)后两项可以写成
∂ p ∂ T = ∂ p ∂ y ∂ y ∂ T = [ f x Z 0 − f x X Z 2 − f x X Y Z 2 f x + f x X 2 Z 2 − f x Y Z 0 − f y Z − f x Y Z 2 − f y − f y Y 2 Z 2 f x X Y Z 2 f x X Z ] (11) \frac{\partial\mathbf{p}}{\partial\mathbf{T}}=\frac{\partial\mathbf{p}}{\partial\mathbf{y}}\frac{\partial\mathbf{y}}{\partial\mathbf{T}}=\begin{bmatrix} \frac{f_{x}}{Z}&0&-\frac{f_{x}X}{Z^{2}}&-\frac{f_{x}XY}{Z^{2}}&f_{x}+\frac{f_{x}X^{2}}{Z^{2}}&-\frac{f_{x}Y}{Z}\\ 0&-\frac{f_{y}}{Z}&-\frac{f_{x}Y}{Z^{2}}&-f_{y}-\frac{f_{y}Y^{2}}{Z^{2}}&\frac{f_{x}XY}{Z^{2}}&\frac{f_{x}X}{Z} \end{bmatrix}\tag{11} Tp=ypTy=[Zfx00ZfyZ2fxXZ2fxYZ2fxXYfyZ2fyY2fx+Z2fxX2Z2fxXYZfxYZfxX](11)
( 10 ) (10) (10)又可以写成
KaTeX parse error: No such environment: align* at position 8: \begin{̲a̲l̲i̲g̲n̲*̲}̲ \frac{\partial…
问题 ( 9 ) (9) (9)的雅可比矩阵为
J i = ∂ e i ∂ T \mathbf{J}_{i}=\frac{\partial\mathbf{e}_{i}}{\partial\mathbf{T}} Ji=Tei
由此得到
KaTeX parse error: No such environment: align* at position 8: \begin{̲a̲l̲i̲g̲n̲*̲}̲\mathbf{H}_{k}=…
则更新量可以通过下式计算
H k Δ T k = − b k \mathbf{H}_{k}\Delta\mathbf{T}_{k}=-\mathbf{b}_{k} HkΔTk=bk

并通过下式更新
T k + 1 = E x p ( Δ T k ) T k \mathbf{T}_{k+1}=\mathrm{Exp}(\Delta\mathbf{T}_{k})\mathbf{T}_{k} Tk+1=Exp(ΔTk)Tk
最终得到最优的位姿变换

实验

直接法在kitti数据集上的效果如下图,可以看到追踪效果良好
在这里插入图片描述

附录

§1、标准最小二乘问题

标准最小二乘问题对给定 A ∈ R M × N \mathbf{A}\in\mathbb{R}^{M\times{N}} ARM×N,计算 x ∗ ∈ R N \mathbf{x}^{\ast}\in\mathbb{R}^{N} xRN,使得
KaTeX parse error: No such environment: align* at position 8: \begin{̲a̲l̲i̲g̲n̲*̲}̲ \mathbf{x}^{\a…
首先对 A \mathbf{A} A进行SVD分解
A = U [ Σ r × r O O O ] V T \mathbf{A}=\mathbf{U} \begin{bmatrix} \boldsymbol\Sigma_{r\times{r}}&\mathbf{O}\\ \mathbf{O}&\mathbf{O} \end{bmatrix}\mathbf{V}^{T} A=U[Σr×rOOO]VT
A \mathbf{A} A的伪逆为
A † = V [ Σ r × r − 1 O O O ] U T (A2) \mathbf{A}^{\dagger}=\mathbf{V} \begin{bmatrix} \boldsymbol\Sigma_{r\times{r}}^{-1}&\mathbf{O}\\ \mathbf{O}&\mathbf{O} \end{bmatrix}\mathbf{U}^{T}\tag{A2} A=V[Σr×r1OOO]UT(A2)
可以证明,满足 ( A 1 ) \mathrm{(A1)} (A1)的模长最小的解为
x ∗ = A † b (A3) \mathbf{x}^{\ast}=\mathbf{A}^{\dagger}\mathbf{b}\tag{A3} x=Ab(A3)
特别地,当 r a n k ( A ) = N \mathrm{rank}(\mathbf{A})=N rank(A)=N时, A † = ( A T A ) − 1 A \mathbf{A}^{\dagger}=(\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A} A=(ATA)1A ( A 1 ) \mathrm{(A1)} (A1)仅有如下一个解
x ∗ = ( A T A ) − 1 A b (A4) \mathbf{x}^{\ast}=(\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}\mathbf{b}\tag{A4} x=(ATA)1Ab(A4)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/12585.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

VPN相关学习笔记

目录 VPN IPSec AH ESP IKE 工作流程 SSL SSL协议 握手协议 记录协议 警告协议 非对称密钥协商过程 SSL VPN工作 两种技术对比 VPN 介绍:VPN创建了一个专用隧道,用于安全地传输数据。Internet协议安全(IPSec)和安全套…

通过条件访问策略增强企业的安全性

在当今的数字时代,保护组织的数据比以往任何时候都更加重要,实现这一目标的一种方法是实施条件访问策略。这些策略有助于管理谁可以访问组织的网络,确保只有经过授权的人员才能通过,它们可以充当组织数据的保安,只让符…

二叉树搜索树(上)

二叉树搜索树(上) 概念 二叉搜索树又称二叉排序树,它或者是一颗空树,或者是具有以下性质的二叉树: • 若它的左子树不为空,则左子树上所有结点的值都⼩于等于根结点的值 • 若它的右子树不为空,则右子树…

人群计数制作私有数据集教程-----自用

一、人群计数的数据集包括两部分:图像部分和标签部分 1.公开数据集格式 标签部分主要包括每个人头的坐标点:(x, y); 常见的标签格式例如:ShanghaiTech数据集中的格式,用mat文件存储每个人头的坐…

SpringBoot项目快速打包成jar项目与部署

上文中,tomcat配置完成了。接下来我们需要将我们的项目打包部署至tomcat服务器。 传统的Web应用进行打包部署时,通常会打成War包的形式,然后将War包部署到Tomcat等服务器中,而SpringBoot应用使用的是嵌入式Servlet容器,也就是说,SpringBoot应用默认是以jar包形式进行打包…

【YOLOv8图像分类】YOLOv8图像分类源代码

前言 此程序是使用YOLOv8训练自己的图像并测试。Yolo系列模型可以说是比较特殊的模型,因为不像其他公开网络ResNet、GoogLeNet等等,可以自己构建和更改层。Yolo只能整体调用这个网络,这个可能是让初学者比较头疼的问题,就是看不到…

【干货】金融数据分析:风险评估中的数据分析

风险评估中的数据分析 金融风险评估因是金融行业的核心任务之一,也是保障金融稳定和机构可持续发展的关键。在当今数字化时代,数据分析已经成为金融风险评估的有力武器,能够帮助我们拨开复杂现象的迷雾,洞察风险的本质。 金融风…

【Hadoop】【hdfs】【大数据技术基础】实验三 HDFS Java API编程实践

实验三: HDFS Java API编程实践 实验题目 HDFS Java API编程实践 实验目的 熟悉HDFS操作常用的Java API。 实验平台 操作系统:Linux Hadoop版本:2.6.0或以上版本 JDK版本:1.6或以上版本 Java IDE:Eclipse 实验…

第R3周:RNN-心脏病预测(TensorFlow版)

>- **🍨 本文为[🔗365天深度学习训练营]中的学习记录博客** >- **🍖 原作者:[K同学啊]** 🍺 要求: 找到并处理第8周的程序问题(本文给出了答案)了解循环神经网络&#xff08…

数据结构 ——— 链式二叉树oj题:将链式二叉树的前序遍历存放在数组中

题目要求 给你二叉树的根节点 root ,返回它节点值的 前序 遍历 手搓一个链式二叉树 代码演示: // 数据类型 typedef int BTDataType;// 二叉树节点的结构 typedef struct BinaryTreeNode {BTDataType data; //每个节点的数据struct BinaryTreeNode* l…

前端中的 File 和 Blob两个对象到底有什么不同

JavaScript 在处理文件、二进制数据和数据转换时,提供了一系列的 API 和对象,比如 File、Blob、FileReader、ArrayBuffer、Base64、Object URL 和 DataURL。每个概念在不同场景中都有重要作用。下面的内容我们将会详细学习每个概念及其在实际应用中的用法…

酒店叮咚门铃的类型有哪些

在酒店的环境中,叮咚门铃虽小,却有着重要的作用,它是客人与酒店服务人员沟通的重要桥梁。酒店叮咚门铃主要有以下几种类型: 有线叮咚门铃 这是较为传统的一种类型。它通过电线连接,通常安装在客房的墙壁上,…

SFW3009 多功能移动照明系统

SFW3009 多功能移动照明系统 适用范围 广泛适用于铁路、水利、电网等抢险救援现场大范围移动照明。 结构特性 灯具体积小、重量轻,可以实现拖行、手提、背行三种携带方式。灯具底部也可以安装铁轨轮,便于用户在铁轨上作业。 灯头组件由左右两个灯头…

JavaWeb——Web入门(8/9)- Tomcat:基本使用(下载与安装、目录结构介绍、启动与关闭、可能出现的问题及解决方案、总结)

目录 基本使用内容 下载与安装 目录结构介绍 启动与关闭 启动 关闭 可能出现的问题及解决方案 问题一:启动时窗口一闪而过 问题二:端口号冲突 问题三:部署应用程序 总结 基本使用内容 Tomcat 服务器在 Java Web 开发中扮演着至关重…

w032基于web的阿博图书馆管理系统

🙊作者简介:拥有多年开发工作经验,分享技术代码帮助学生学习,独立完成自己的项目或者毕业设计。 代码可以查看文章末尾⬇️联系方式获取,记得注明来意哦~🌹赠送计算机毕业设计600个选题excel文件&#xff0…

Java:使用Jackson解析json时如何正确获取节点中的值?

使用Jackson解析json时,经常会需要获取到某一节点下的值,例如: { “data”: { "test1": "value1", "test2": null, "test3": 10 } } 以Jackson2.13.5为例,使用at(jsonPtrExp)这种API&…

前端必懂:常见排序算法深度解析

在前端开发中,排序算法是一种非常重要的工具。无论是对数组进行排序以展示数据,还是对复杂对象进行排序以实现特定的功能,理解和掌握常见的排序算法对于提高开发效率和代码质量至关重要。本文将介绍几种前端常见的排序算法。 一、冒泡排序(Bu…

vue 依赖注入(Provide、Inject )和混入(mixins)

Prop 逐级透传问题​ 通常情况下,当我们需要从父组件向子组件传递数据时,会使用 props。想象一下这样的结构:有一些多层级嵌套的组件,形成了一棵巨大的组件树,而某个深层的子组件需要一个较远的祖先组件中的部分数据。…

开启鸿蒙开发之旅:核心组件及其各项属性介绍——布局容器组件

写在前面 组件的结构 rkTS通过装饰器 Component 和 Entry 装饰 struct 关键字声明的数据结构,构成一个自定义组件。 自定义组件中提供了一个 build 函数,开发者需在该函数内以链式调用的方式进行基本的 UI 描述 今天我们要学习的就是写在build 函数里的系…

数据结构OJ题

目录 轮转数组原地移除数组中所有元素val删除有序数组中的重复项合并两个有序数组 轮转数组 思路1: 1.利用循环将最后一位数据放到临时变量(n)中 2.利用第二层循环将数据往后移一位 3.将变量(n)的数据放到数组第一位 时…