分布式唯一ID生成(二): leaf

文章目录

  • 本系列
  • 前言
  • 号段模式
    • 双buffer优化
    • biz优化
    • 动态step
    • 源码走读
  • 雪花算法
    • 怎么设置workerId
    • 解决时钟回拨
    • 源码走读
  • 总结

本系列

  • 漫谈分布式唯一ID
  • 分布式唯一ID生成(二):leaf(本文)
  • 分布式唯一ID生成(三):uid-generator(待完成)
  • 分布式唯一ID生成(四):tinyid(待完成)

前言

本文将介绍leaf号段模式和雪花算法模式的设计原理,并走读源码

源码地址:https://github.com/Meituan-Dianping/Leaf

leaf提供了 leaf server,业务只管调leaf server的接口获取ID,leaf serve内部根据号段或雪花算法生成ID,而不是业务服务自己去请求数据库生成id,或自己根据雪花算法生成id

在这里插入图片描述


号段模式

在使用db自增主键的基础上,从每次获取ID都要读写一次db,改成一次获取一批ID

各个业务的记录通过 biz_tag 区分,每个业务的ID上次分配到哪了,在一张表中用一条记录表示

表结构如下:

CREATE TABLE `leaf_alloc` (`biz_tag` varchar(128)  NOT NULL DEFAULT '', -- your biz unique name`max_id` bigint(20) NOT NULL DEFAULT '1',`step` int(11) NOT NULL,`description` varchar(256)  DEFAULT NULL,`update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,PRIMARY KEY (`biz_tag`)
) ENGINE=InnoDB;

重要字段为:

  • biz_tag:标识业务
  • max_id:目前分配到的最大值-1,也是 下一个号段的起始值
  • step:每次分配号段的长度

如果step=1000,当这1000个ID消耗完后才会读写一次DB,对DB的压力降为原来的 1/1000

当缓存中没有ID时,需要从db获取号段,在事务中执行如下2条sql:

UPDATE leaf_alloc SET max_id = max_id + step WHERE biz_tag = #{tag}
SELECT biz_tag, max_id, step FROM leaf_alloc WHERE biz_tag = #{tag}

然后加载到本地

N个server执行上述操作,对外提供http接口用于生成id,整体架构如下图所示:

在这里插入图片描述

优点:

  • Leaf服务可以很方便的线性扩展,例如按照biz_tag分库分表
  • ID是趋势递增的64位数字,满足上述数据库存储的类型要求
  • 容灾性高:Leaf服务内部有号段缓存,即使DB宕机,短时间内仍能正常对外提供服务
  • 易接入:可自定义初始max_id的值,方便业务从原有的ID方式上迁移过来

缺点:

  • 业务上不够安全:ID近似于严格递增,会泄露发号数量的信息

  • TP999显著比其他TP值大:当号段使用完之后还是会hang在更新数据库的I/O上

    • 以step=1000为例,99.9%的请求分配ID都非常快,0.1%的请求会比较慢(读写一次db平均5ms),如果恰好遇到db抖动,耗时能到几秒
  • 单点问题:DB如果宕机会造成整个系统不可用

  • 网络IO开销大:client每获取一个id,都要对leaf server发起一次http调用


双buffer优化

针对TP999大的问题,Leaf号段模式做了一些优化:在内存中维护两个号段,在当前号段消费到一定百分比时,就 异步去db加载下一个号段 到内存中
这样当前号段用完后,就能马上切换到下一个号段

在这里插入图片描述

biz优化

对于每个请求,都需要校验参数中的biz是否合法。如果每次都去db查下biz在leaf_alloc表是否存在,性能开销大且没必要

leaf在实例启动时,将全量biz都查出来放到本地缓存中,之后每隔60s都会刷新一次,这样校验biz是否合法都用本地map判断,性能极高

缺点是最多延迟1分钟才新增的biz才生效

也就牺牲一点一致性换取超高的性能


动态step

如果每次获取号段的长度step是固定的,但流量不是固定的,如果流量增加 10 倍,每个号段很快就被用完了,仍然有可能导致数据库压力较大

同时也降低了可用性,例如本来能在DB不可用的情况下维持10分钟正常工作,那么如果流量增加10倍就只能维持1分钟正常工作了

因此leaf中每次从db加载号段时,加载多少ID并不是固定的

  • 如果qps高,就可以一次多加载点,减少调db的次数
  • 如果qps低,可以一次少加载点。否则在缓存中的号段迟迟消耗不完的情况下,会导致更新DB的新号段与前一次下发的号段ID跨度过大

leaf的策略为每次更新buffer时动态维护step,当需要从db加载号段时,计算距离上次从db加载过去了多久:

  • 小于15mins:获取的号段长度翻倍
  • 15~30mins:获取的号段长度和上次一样
  • 大于30mins:获取的号段长度减半

源码走读

初始化:

public boolean init() {// 将所有biz加载到内存updateCacheFromDb();initOK = true;// 后台每1s刷新一次内存中的bizupdateCacheFromDbAtEveryMinute();return initOK;
}

获取ID流程如下:

public Result get(final String key) {if (!initOK) {return new Result(EXCEPTION_ID_IDCACHE_INIT_FALSE, Status.EXCEPTION);}// 校验biz是否合法if (cache.containsKey(key)) {SegmentBuffer buffer = cache.get(key);if (!buffer.isInitOk()) {synchronized (buffer) {if (!buffer.isInitOk()) {try {// 号段未初始化,从db加载号段updateSegmentFromDb(key, buffer.getCurrent());buffer.setInitOk(true);} catch (Exception e) {}}}}// 从号段获取IDreturn getIdFromSegmentBuffer(cache.get(key));}return new Result(EXCEPTION_ID_KEY_NOT_EXISTS, Status.EXCEPTION);
}

getIdFromSegmentBuffer方法:

public Result getIdFromSegmentBuffer(final SegmentBuffer buffer) {while (true) {buffer.rLock().lock();try {final Segment segment = buffer.getCurrent();// 如果当前号段已经用了10%,异步去加载下一个号段if (!buffer.isNextReady() && (segment.getIdle() < 0.9 * segment.getStep()) && buffer.getThreadRunning().compareAndSet(false, true)) {service.execute(new Runnable() {@Overridepublic void run() {// 加载下一个号段});}// 当前号段还没用完,从当前号段获取long value = segment.getValue().getAndIncrement();if (value < segment.getMax()) {return new Result(value, Status.SUCCESS);}} finally {buffer.rLock().unlock();}// 到这说明当前号段用完了waitAndSleep(buffer);buffer.wLock().lock();try {// 再次检查当前号段,因为可能别的线程加载了final Segment segment = buffer.getCurrent();long value = segment.getValue().getAndIncrement();if (value < segment.getMax()) {return new Result(value, Status.SUCCESS);}// 切换到下一个号段,重新执行while循环获取if (buffer.isNextReady()) {buffer.switchPos();buffer.setNextReady(false);} else {// 两个号段都不可用,报错return new Result(EXCEPTION_ID_TWO_SEGMENTS_ARE_NULL, Status.EXCEPTION);}} finally {buffer.wLock().unlock();}}}

最后看下怎么从db加载号段:
public void updateSegmentFromDb(String key, Segment segment) {SegmentBuffer buffer = segment.getBuffer();LeafAlloc leafAlloc;// ...// 动态调整下一次的steplong duration = System.currentTimeMillis() - buffer.getUpdateTimestamp();int nextStep = buffer.getStep();if (duration < SEGMENT_DURATION) {if (nextStep * 2 > MAX_STEP) {} else {nextStep = nextStep * 2;}} else if (duration < SEGMENT_DURATION * 2) {} else {nextStep = nextStep / 2 >= buffer.getMinStep() ? nextStep / 2 : nextStep;}LeafAlloc temp = new LeafAlloc();temp.setKey(key);temp.setStep(nextStep);// 从db获取下一个号段leafAlloc = dao.updateMaxIdByCustomStepAndGetLeafAlloc(temp);buffer.setUpdateTimestamp(System.currentTimeMillis());buffer.setStep(nextStep);buffer.setMinStep(leafAlloc.getStep());// 加载到内存中long value = leafAlloc.getMaxId() - buffer.getStep();segment.getValue().set(value);segment.setMax(leafAlloc.getMaxId());segment.setStep(buffer.getStep());
}

内存中Segment结构主要有以下字段:
  • value:下一个要分配的ID
  • max:当前号段的最大边界

每次从Segment中分配ID时,返回value的值即可,并把value++


雪花算法

号段模式的ID很接近严格递增,如果在订单场景,可以根据ID猜到一天的订单量。此时就可以用雪花算法模式

leaf在每一位的分配和标准snowflake一致:
在这里插入图片描述

  • 最高位符号位为0

  • 接下来41位:毫秒级时间戳

    • 存储当前时间距离2010年某一天的差值
  • 接下来10位:workerId

  • 最后12位:每一毫秒内的序列号

每到新的毫秒时,每一毫秒内的序列号不是从0开始,而是从100以内的一个随机数开始

为啥这么设计?试想如果每一秒都从0开始,在qps低的情况下,每一毫秒只产生1个id,那么最末尾永远是0。如果对ID取模分表,就会永远在第0号表,造成数据分布不均


怎么设置workerId

对于workerID的分配,当服务集群数量较小的情况下,完全可以手动配置。如果服务规模较大,动手配置成本太高。于是leaf用zookeeper 自动获取workerId,流程如下:

  1. 以自己的 ip:port为key,去zk建立持久顺序节点,以zk生成的 自增序号为workerId

    1. 创建的节点最后两级路径为:/forever/ip:port-序列号
  2. 如果zk中已经有自己ip:port的节点,就 复用 其workerId

    1. 怎么判断?拉取/forever下所有节点,每个节点的格式为ipport-序列号,判断每个节点中-前面的ipport是不是等于自己,如果等于取-后面的序列号作为workerId
    2. 只有leaf server会创建zk节点,因此节点数量可控
    3. 为啥可以复用?不会在同一时刻,有相同ip:port的两个实例,因此复用一定不会发生冲突

这种workerId分配策略能保证唯一性吗?能

  • 如果 ip:port 不同,在zk中一定是两个不同的序列号,因此不会冲突
  • 一个集群中不可能同时存在ip:port相同的两个机器

每个leaf server的ip:port最好手动指定,或者部署在ip不会变化的环境中

高可用:workerId会存到本地文件,这样遇到极端情况:leaf server服务重启,且zk也宕机时,也不影响使用
在这里插入图片描述


解决时钟回拨

雪花算法严格依赖时间,如果发生了时钟回拨,就可能导致ID重复,因此需要监测是否发生了时钟回拨并处理,在服务启动和运行时都会检测

服务启动时检测时间是否回退:

  • leaf server运行时,每隔3s会上自己的当前时间到zk节点中
  • 启动时,校验当前时间不能小于 zk中最近一次上报的时间

官方文档还提到如果是第一次启动,还会和其他leaf server校准时间。但源码中没找到这部分,应该是不需要做这个校准,已删除

运行时检测时间是否回退:

  • 全局维护了上次获取ID时的时间戳:lastTimestamp

  • 如果当前时间 now < lastTimestamp,说明发生了时钟回拨

    • 回拨了超过5ms,返回报错
    • 回拨了5ms内,sleep一会,直到赶上上次时间

如果zk宕机导致定时上报没有成功,同时又发生了时钟回拨,且leaf server宕机。此时leaf server启动时可能产生和之前重复的ID。因此需要做好监控告警,zk的高可用

如果3s内没上报,leaf server宕机了,然后时钟回退了2s,此时根据zk的时间检测不出来发生了时钟回退,也会造成ID重复。解决方法就是等一段时间才重启机器,保证等待的时间比回拨的时间长就行


源码走读

初始化:

public boolean init() {try {CuratorFramework curator = createWithOptions(connectionString, new RetryUntilElapsed(1000, 4), 10000, 6000);curator.start();Stat stat = curator.checkExists().forPath(PATH_FOREVER);if (stat == null) {//不存在根节点,机器第一次启动,创建/snowflake/ip:port-000000000,并上传数据zk_AddressNode = createNode(curator);//worker id 默认是0,存到本地文件updateLocalWorkerID(workerID);//每3s上报本机时间给forever节点ScheduledUploadData(curator, zk_AddressNode);return true;} else {Map<String, Integer> nodeMap = Maps.newHashMap();//ip:port->00001Map<String, String> realNode = Maps.newHashMap();//ip:port->(ipport-000001)//存在根节点,先检查是否有属于自己的节点List<String> keys = curator.getChildren().forPath(PATH_FOREVER);for (String key : keys) {String[] nodeKey = key.split("-");realNode.put(nodeKey[0], key);nodeMap.put(nodeKey[0], Integer.parseInt(nodeKey[1]));}Integer workerid = nodeMap.get(listenAddress);if (workerid != null) {//有自己的节点,zk_AddressNode=ip:portzk_AddressNode = PATH_FOREVER + "/" + realNode.get(listenAddress);workerID = workerid;//启动worder时使用会使用// 当前时间不能小于 zk中最近一次上报的时间if (!checkInitTimeStamp(curator, zk_AddressNode)) {throw new CheckLastTimeException("init timestamp check error,forever node timestamp gt this node time");}// 每3s上报时间doService(curator);// 将workerId写到本地updateLocalWorkerID(workerID);} else {//新启动的节点,创建持久节点 ,不用check时间String newNode = createNode(curator);zk_AddressNode = newNode;String[] nodeKey = newNode.split("-");workerID = Integer.parseInt(nodeKey[1]);doService(curator);updateLocalWorkerID(workerID);}}} catch (Exception e) {// zk不可用,从本地文件加载workerIdtry {Properties properties = new Properties();properties.load(new FileInputStream(new File(PROP_PATH.replace("{port}", port + ""))));workerID = Integer.valueOf(properties.getProperty("workerID"));} catch (Exception e1) {return false;}}return true;}

获取ID:

public synchronized Result get(String key) {long timestamp = timeGen();// 发生了时钟回拨if (timestamp < lastTimestamp) {long offset = lastTimestamp - timestamp;// 回拨了5ms内,sleep一会if (offset <= 5) {try {wait(offset << 1);timestamp = timeGen();if (timestamp < lastTimestamp) {return new Result(-1, Status.EXCEPTION);}} catch (InterruptedException e) {return new Result(-2, Status.EXCEPTION);}// 回拨了超过5ms,返回报错} else {return new Result(-3, Status.EXCEPTION);}}// 和上次在同一毫秒if (lastTimestamp == timestamp) {sequence = (sequence + 1) & sequenceMask;if (sequence == 0) {//seq 为0表示是当前ms已经超过4096个ID了// 需要sleep一会,下一毫秒时间开始对seq做随机sequence = RANDOM.nextInt(100);timestamp = tilNextMillis(lastTimestamp);}} else {//如果是新的ms, 对seq做随机sequence = RANDOM.nextInt(100);}lastTimestamp = timestamp;long id = ((timestamp - twepoch) << timestampLeftShift) | (workerId << workerIdShift) | sequence;return new Result(id, Status.SUCCESS);}

总结

leaf提供两种分布式ID生成策略:

  • 号段模式:

    • 每次从db获取一批ID,而不是一个ID,减少调DB的频率
    • 用双buffer解决TP999耗时高的问题
    • 在内存判断参数biz是否合法,提高校验性能
    • 使用动态step,解决突发流量造成对db压力仍然大的问题
  • 雪花算法模式:

    • 配合ZK做到动态获取workerId,解决海量机器的 workId 维护问题,也能保证正确性:同时不会有两个leaf server拥有相同的workerId
    • 在服务启动时和运行时都校验是否发生了时钟回拨。不过服务启动时的校验有时会失效,最好sleep一段时间再重启,这段时间要大于时钟回拨的时间

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/9923.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

Spring Boot 与 Vue 共筑电影评价卓越平台

作者介绍&#xff1a;✌️大厂全栈码农|毕设实战开发&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导。 &#x1f345;获取源码联系方式请查看文末&#x1f345; 推荐订阅精彩专栏 &#x1f447;&#x1f3fb; 避免错过下次更新 Springboot项目精选实战案例 更多项目…

Everything软件实现FTP功能

Windows的文件共享和ftp实在难用&#xff0c;这里介绍一种新的局域网内共享文件的方法 下载 Everything 选择想要共享的文件&#xff0c;选择包含到数据库&#xff0c;注意&#xff1a;要在对应的分卷设置&#xff0c;共享文件夹名称不要包含中文字符&#xff0c;因为Windows底…

CertiK创始人顾荣辉出席新加坡商业与慈善论坛,发表主旨演讲并主持专题讨论

2024年11月5日 —— 美国哥伦比亚大学教授、CertiK联合创始人、MAS国际技术顾问顾荣辉受邀参加2024年度新加坡商业与慈善论坛&#xff08;Business & Philanthropy Leadership Forum Singapore&#xff0c;简称B&P Forum&#xff09;&#xff0c;期间发表主旨演讲并主持…

oracle创建实例失败-因为网络原因

风起波谲 最近遇到一个case很有意思。 起因是在redhat6.5上&#xff0c;安装一个oracle 19c。这个问题到没有特别大。换glibc的包就装上去了。 但是dbca就失败了 有点紧张&#xff0c;不会是遇到了不可控依赖问题吧。遂去看了把日志 日志看了以后反而没那么紧张了&#xff0…

力扣题库——75.颜色分类

这道题采用三路快速排序&#xff0c;快速排序思路看这里快速排序。将数列分为三组&#xff1a;小于基准、等于基准、大于基准。和快排一样&#xff0c;对左右递归进行快速排序。 先将题目简化&#xff0c;如果只有数字0和1&#xff0c;扫描一遍数组&#xff0c;遇到数字1不用管…

Android中桌面小部件framework层使用到的设计模式

在Android中&#xff0c;桌面小部件&#xff08;App Widget&#xff09;的Framework层采用了多种设计模式&#xff0c;以实现模块化、可维护性和高效的交互。 以下是Android桌面小部件Framework层中常用的设计模式及其具体应用&#xff1a; 1. 观察者模式&#xff08;Observe…

解锁 AI 新境界:元素碰撞的神奇应用技巧全解析

前言 在当今科技飞速发展的时代&#xff0c;ChatGPT 作为一款强大的人工智能工具&#xff0c;为我们开启了全新的创意探索之门。当我们让 ChatGPT 去进行大量的元素碰撞时&#xff0c;相较于传统人力的联想方式&#xff0c;它能够凭借其强大的算法和海量的数据处理能力&#x…

操作系统-磁盘

文章目录 磁盘的结构一、磁盘的物理结构二、磁盘的逻辑结构 磁盘的调度算法磁盘时间算法先来先服务&#xff08;FCFS - First-Come, First-Served&#xff09;最短寻道时间优先&#xff08;SSTF - Shortest Seek Time First&#xff09;扫描算法&#xff08;SCAN&#xff0c;也…

C++类和对象 (下)

文章目录 前言一. 再探构造函数初始化列表特性总结练习 二. 类型转换2.1 隐式类型转换2.2 临时对象具有常性2.3 explicit关键字2.4 多参数类型转化 三. static成员概念特性练习 四. 友元概念特性 五. 内部类概念特性 六. 匿名对象概念特性 七. 对象拷贝时的编译器优化END 前言 …

玩的花,云产品也能拼团了!!!

说起拼单大家都不陌生&#xff0c;电商一贯的营销手段&#xff0c;不过确实可以给消费者省下一笔钱。双11到了&#xff0c;腾讯云产品也玩起了拼团&#xff0c;这明显是对开发人员和各企业的福利。 对于有云产品需求的个人或企业&#xff0c;这次绝对是难得的一次薅羊毛机会。…

深度学习-张量相关

一. 张量的创建 张量简介 张量是pytorch的基本数据结构 张量&#xff0c;英文为Tensor&#xff0c;是机器学习的基本构建模块&#xff0c;是以数字方式表示数据的形式。 例如&#xff0c;图像可以表示为形状为 [3, 224, 224] 的张量&#xff0c;这意味着 [colour_channels, h…

境内部署DIfy(上篇)

背景&#xff1a; 由于近2年大模型的火热催生出很多业务场景&#xff0c;这也迫使我们这些老一辈的程序搬运工去接触新事物&#xff0c;“工欲善其事必先利其器”&#xff0c;先从大模型应用开始摸索&#xff0c;网上大把工具&#xff0c;再三思考后决定先从Dify开始&#xff…

[CKS] 利用Trivy对image进行扫描

最近准备花一周的时间准备CKS考试&#xff0c;在准备考试中发现有一个题目关于Trivy镜像安全扫描的题目。 What’s Trivy Trivy的官方仓库https://github.com/aquasecurity/trivy&#xff0c;Trivy是一个开源的容器镜像漏洞扫描工具。它通过分析容器镜像中的操作系统包和应用…

vue3入门知识(一)

vue3简介 性能的提升 打包大小减少41%初次渲染快55%&#xff0c;更新渲染快133%内存减少54% 源码的升级 使用Proxy代替defineProperty实现响应式重写虚拟DOM的实现和Tree-Shaking 新的特性 1. Composition API&#xff08;组合API&#xff09; setupref与reactivecomput…

数据结构和算法入门

复杂度 大O记法 计算机怎么判断程序性能&#xff1f; 我们都知道编程基本上是在和数据打交道&#xff0c;大多数程序基本都在处理获取数据、查询数据、操作数据、返回数据相关的逻辑。 因此出现了数据结构和算法&#xff0c;这两者出现本质为了解决如何能够更快、更省进行数…

【Linux第八课-进程间通信】管道、共享内存、消息队列、信号量、信号、可重入函数、volatile

目录 进程间通信为什么&#xff1f;是什么&#xff1f;怎么办&#xff1f;一般规律具体做法 匿名管道原理代码 命名管道原理代码 system V共享内存消息队列信号量信号量的接口 信号概念为什么&#xff1f;怎么办&#xff1f;准备信号的产生信号的保存概念三张表匹配的操作和系统…

串的模式匹配

子串的定位操作通常称为串的模式匹配&#xff0c;它求的是子串(常称模式串)在主串中的位置。 子串——主串的一部分&#xff0c;一定存在 模式串——不一定能在主串中找到 朴素模式匹配 将主串中所有长度为m的子串&#xff08;共有n-m1个&#xff09;依次与模式串对比&…

继承的学习

1.继承 继承权限在类外&#xff0c;访问权限在类内部 1.1继承的概念 继承是面向对象程序设计使代码可以复用的重要手段&#xff08;解决类层次的复用问题&#xff09; 派生类&#xff1a;类特性的基础上进行扩展&#xff0c;增加方法&#xff08;成员函数&#xff09;和属性…

YOLOPv2论文翻译

YOLOPv2: Better, Faster, Stronger for Panoptic Driving Perception 摘要 在过去的十年中&#xff0c;多任务学习方法在解决全景驾驶感知问题方面取得了令人鼓舞的成果&#xff0c;既提供了高精度又具备高效能的性能。在设计用于实时实际自动驾驶系统的网络时&#xff0c;这…

跳表原理-课堂笔记

课程地址 跳表是一种基于随机化的有序数据结构&#xff0c;它提出是为了赋予有序单链表以 O(logn) 的快速查找和插入的能力 创建 首先在头部创建一个 sentinel 节点&#xff0c;然后在 L1 层采用“抛硬币”的方式来决定 L0 层的指针是否增长到 L1 层 例如上图中&#xff0c;L…