YOLO11改进 | 融合改进 | C3k2引入多尺度分支来增强特征表征【全网独家 附结构图】

秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


本文给大家带来的教程是将YOLO11的C3k2替换为融合后的结构来提取特征。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。 

专栏地址:YOLO11入门 + 改进涨点——点击即可跳转 欢迎订阅

目录

1.论文

2.  C3k2_DiverseBranchBlock代码实现

2.1 将 C3k2_DiverseBranchBlock添加到YOLO11中

2.2 更改init.py文件

2.3 添加yaml文件

2.4 在task.py中进行注册

2.5 执行程序

3.修改后的网络结构图

4. 完整代码分享

5. GFLOPs

6. 进阶

7.总结


1.论文

论文地址:Diverse Branch Block: Building a Convolution as an Inception-like Unit——点击即可跳转

官方仓库:官方代码仓库——点击即可跳转

2.  C3k2_DiverseBranchBlock代码实现

2.1 将 C3k2_DiverseBranchBlock添加到YOLO11中

关键步骤一:将下面代码粘贴到在/ultralytics/ultralytics/nn/modules/block.py中

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as npdef transI_fusebn(kernel, bn):gamma = bn.weightstd = (bn.running_var + bn.eps).sqrt()return kernel * ((gamma / std).reshape(-1, 1, 1, 1)), bn.bias - bn.running_mean * gamma / stddef transII_addbranch(kernels, biases):return sum(kernels), sum(biases)def transIII_1x1_kxk(k1, b1, k2, b2, groups):if groups == 1:k = F.conv2d(k2, k1.permute(1, 0, 2, 3))  #b_hat = (k2 * b1.reshape(1, -1, 1, 1)).sum((1, 2, 3))else:k_slices = []b_slices = []k1_T = k1.permute(1, 0, 2, 3)k1_group_width = k1.size(0) // groupsk2_group_width = k2.size(0) // groupsfor g in range(groups):k1_T_slice = k1_T[:, g * k1_group_width:(g + 1) * k1_group_width, :, :]k2_slice = k2[g * k2_group_width:(g + 1) * k2_group_width, :, :, :]k_slices.append(F.conv2d(k2_slice, k1_T_slice))b_slices.append((k2_slice * b1[g * k1_group_width:(g + 1) * k1_group_width].reshape(1, -1, 1, 1)).sum((1, 2, 3)))k, b_hat = transIV_depthconcat(k_slices, b_slices)return k, b_hat + b2def transIV_depthconcat(kernels, biases):return torch.cat(kernels, dim=0), torch.cat(biases)def transV_avg(channels, kernel_size, groups):input_dim = channels // groupsk = torch.zeros((channels, input_dim, kernel_size, kernel_size))k[np.arange(channels), np.tile(np.arange(input_dim), groups), :, :] = 1.0 / kernel_size ** 2return k#   This has not been tested with non-square kernels (kernel.size(2) != kernel.size(3)) nor even-size kernels
def transVI_multiscale(kernel, target_kernel_size):H_pixels_to_pad = (target_kernel_size - kernel.size(2)) // 2W_pixels_to_pad = (target_kernel_size - kernel.size(3)) // 2return F.pad(kernel, [H_pixels_to_pad, H_pixels_to_pad, W_pixels_to_pad, W_pixels_to_pad])def conv_bn(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1,padding_mode='zeros'):conv_layer = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,stride=stride, padding=padding, dilation=dilation, groups=groups,bias=False, padding_mode=padding_mode)bn_layer = nn.BatchNorm2d(num_features=out_channels, affine=True)se = nn.Sequential()se.add_module('conv', conv_layer)se.add_module('bn', bn_layer)return seclass IdentityBasedConv1x1(nn.Conv2d):def __init__(self, channels, groups=1):super(IdentityBasedConv1x1, self).__init__(in_channels=channels, out_channels=channels, kernel_size=1, stride=1,padding=0, groups=groups, bias=False)assert channels % groups == 0input_dim = channels // groupsid_value = np.zeros((channels, input_dim, 1, 1))for i in range(channels):id_value[i, i % input_dim, 0, 0] = 1self.id_tensor = torch.from_numpy(id_value).type_as(self.weight)nn.init.zeros_(self.weight)def forward(self, input):kernel = self.weight + self.id_tensor.to(self.weight.device).type_as(self.weight)result = F.conv2d(input, kernel, None, stride=1, padding=0, dilation=self.dilation, groups=self.groups)return resultdef get_actual_kernel(self):return self.weight + self.id_tensor.to(self.weight.device)class BNAndPadLayer(nn.Module):def __init__(self,pad_pixels,num_features,eps=1e-5,momentum=0.1,affine=True,track_running_stats=True):super(BNAndPadLayer, self).__init__()self.bn = nn.BatchNorm2d(num_features, eps, momentum, affine, track_running_stats)self.pad_pixels = pad_pixelsdef forward(self, input):output = self.bn(input)if self.pad_pixels > 0:if self.bn.affine:pad_values = self.bn.bias.detach() - self.bn.running_mean * self.bn.weight.detach() / torch.sqrt(self.bn.running_var + self.bn.eps)else:pad_values = - self.bn.running_mean / torch.sqrt(self.bn.running_var + self.bn.eps)output = F.pad(output, [self.pad_pixels] * 4)pad_values = pad_values.view(1, -1, 1, 1)output[:, :, 0:self.pad_pixels, :] = pad_valuesoutput[:, :, -self.pad_pixels:, :] = pad_valuesoutput[:, :, :, 0:self.pad_pixels] = pad_valuesoutput[:, :, :, -self.pad_pixels:] = pad_valuesreturn output@propertydef weight(self):return self.bn.weight@propertydef bias(self):return self.bn.bias@propertydef running_mean(self):return self.bn.running_mean@propertydef running_var(self):return self.bn.running_var@propertydef eps(self):return self.bn.epsclass DiverseBranchBlock(nn.Module):def __init__(self, in_channels, out_channels, kernel_size,stride=1, padding=None, dilation=1, groups=1,internal_channels_1x1_3x3=None,deploy=False, single_init=False):super(DiverseBranchBlock, self).__init__()self.deploy = deployself.nonlinear = Conv.default_actself.kernel_size = kernel_sizeself.out_channels = out_channelsself.groups = groupsif padding is None:padding = autopad(kernel_size, padding, dilation)assert padding == kernel_size // 2if deploy:self.dbb_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,stride=stride,padding=padding, dilation=dilation, groups=groups, bias=True)else:self.dbb_origin = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,stride=stride, padding=padding, dilation=dilation, groups=groups)self.dbb_avg = nn.Sequential()if groups < out_channels:self.dbb_avg.add_module('conv',nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1,stride=1, padding=0, groups=groups, bias=False))self.dbb_avg.add_module('bn', BNAndPadLayer(pad_pixels=padding, num_features=out_channels))self.dbb_avg.add_module('avg', nn.AvgPool2d(kernel_size=kernel_size, stride=stride, padding=0))self.dbb_1x1 = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride,padding=0, groups=groups)else:self.dbb_avg.add_module('avg', nn.AvgPool2d(kernel_size=kernel_size, stride=stride, padding=padding))self.dbb_avg.add_module('avgbn', nn.BatchNorm2d(out_channels))if internal_channels_1x1_3x3 is None:internal_channels_1x1_3x3 = in_channels if groups < out_channels else 2 * in_channels  # For mobilenet, it is better to have 2X internal channelsself.dbb_1x1_kxk = nn.Sequential()if internal_channels_1x1_3x3 == in_channels:self.dbb_1x1_kxk.add_module('idconv1', IdentityBasedConv1x1(channels=in_channels, groups=groups))else:self.dbb_1x1_kxk.add_module('conv1',nn.Conv2d(in_channels=in_channels, out_channels=internal_channels_1x1_3x3,kernel_size=1, stride=1, padding=0, groups=groups, bias=False))self.dbb_1x1_kxk.add_module('bn1', BNAndPadLayer(pad_pixels=padding, num_features=internal_channels_1x1_3x3,affine=True))self.dbb_1x1_kxk.add_module('conv2',nn.Conv2d(in_channels=internal_channels_1x1_3x3, out_channels=out_channels,kernel_size=kernel_size, stride=stride, padding=0, groups=groups,bias=False))self.dbb_1x1_kxk.add_module('bn2', nn.BatchNorm2d(out_channels))#   The experiments reported in the paper used the default initialization of bn.weight (all as 1). But changing the initialization may be useful in some cases.if single_init:#   Initialize the bn.weight of dbb_origin as 1 and others as 0. This is not the default setting.self.single_init()def get_equivalent_kernel_bias(self):k_origin, b_origin = transI_fusebn(self.dbb_origin.conv.weight, self.dbb_origin.bn)if hasattr(self, 'dbb_1x1'):k_1x1, b_1x1 = transI_fusebn(self.dbb_1x1.conv.weight, self.dbb_1x1.bn)k_1x1 = transVI_multiscale(k_1x1, self.kernel_size)else:k_1x1, b_1x1 = 0, 0if hasattr(self.dbb_1x1_kxk, 'idconv1'):k_1x1_kxk_first = self.dbb_1x1_kxk.idconv1.get_actual_kernel()else:k_1x1_kxk_first = self.dbb_1x1_kxk.conv1.weightk_1x1_kxk_first, b_1x1_kxk_first = transI_fusebn(k_1x1_kxk_first, self.dbb_1x1_kxk.bn1)k_1x1_kxk_second, b_1x1_kxk_second = transI_fusebn(self.dbb_1x1_kxk.conv2.weight, self.dbb_1x1_kxk.bn2)k_1x1_kxk_merged, b_1x1_kxk_merged = transIII_1x1_kxk(k_1x1_kxk_first, b_1x1_kxk_first, k_1x1_kxk_second,b_1x1_kxk_second, groups=self.groups)k_avg = transV_avg(self.out_channels, self.kernel_size, self.groups)k_1x1_avg_second, b_1x1_avg_second = transI_fusebn(k_avg.to(self.dbb_avg.avgbn.weight.device),self.dbb_avg.avgbn)if hasattr(self.dbb_avg, 'conv'):k_1x1_avg_first, b_1x1_avg_first = transI_fusebn(self.dbb_avg.conv.weight, self.dbb_avg.bn)k_1x1_avg_merged, b_1x1_avg_merged = transIII_1x1_kxk(k_1x1_avg_first, b_1x1_avg_first, k_1x1_avg_second,b_1x1_avg_second, groups=self.groups)else:k_1x1_avg_merged, b_1x1_avg_merged = k_1x1_avg_second, b_1x1_avg_secondreturn transII_addbranch((k_origin, k_1x1, k_1x1_kxk_merged, k_1x1_avg_merged),(b_origin, b_1x1, b_1x1_kxk_merged, b_1x1_avg_merged))def switch_to_deploy(self):if hasattr(self, 'dbb_reparam'):returnkernel, bias = self.get_equivalent_kernel_bias()self.dbb_reparam = nn.Conv2d(in_channels=self.dbb_origin.conv.in_channels,out_channels=self.dbb_origin.conv.out_channels,kernel_size=self.dbb_origin.conv.kernel_size, stride=self.dbb_origin.conv.stride,padding=self.dbb_origin.conv.padding, dilation=self.dbb_origin.conv.dilation,groups=self.dbb_origin.conv.groups, bias=True)self.dbb_reparam.weight.data = kernelself.dbb_reparam.bias.data = biasfor para in self.parameters():para.detach_()self.__delattr__('dbb_origin')self.__delattr__('dbb_avg')if hasattr(self, 'dbb_1x1'):self.__delattr__('dbb_1x1')self.__delattr__('dbb_1x1_kxk')def forward(self, inputs):if hasattr(self, 'dbb_reparam'):return self.nonlinear(self.dbb_reparam(inputs))out = self.dbb_origin(inputs)if hasattr(self, 'dbb_1x1'):out += self.dbb_1x1(inputs)out += self.dbb_avg(inputs)out += self.dbb_1x1_kxk(inputs)return self.nonlinear(out)def init_gamma(self, gamma_value):if hasattr(self, "dbb_origin"):torch.nn.init.constant_(self.dbb_origin.bn.weight, gamma_value)if hasattr(self, "dbb_1x1"):torch.nn.init.constant_(self.dbb_1x1.bn.weight, gamma_value)if hasattr(self, "dbb_avg"):torch.nn.init.constant_(self.dbb_avg.avgbn.weight, gamma_value)if hasattr(self, "dbb_1x1_kxk"):torch.nn.init.constant_(self.dbb_1x1_kxk.bn2.weight, gamma_value)def single_init(self):self.init_gamma(0.0)if hasattr(self, "dbb_origin"):torch.nn.init.constant_(self.dbb_origin.bn.weight, 1.0)class C3k2_DiverseBranchBlock(nn.Module):"""融合了 C3k2 和 DiverseBranchBlock 的模块。"""def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True, dbb_kernel_size=3, dbb_stride=1, dbb_padding=None, dbb_groups=1):"""Initializes a fused module that combines the C3k2 (faster CSP Bottleneck with 2 convolutions)and DiverseBranchBlock."""super().__init__()# 初始化 C3k2 部分self.c3k2 = C3k2(c1, c2, n=n, c3k=c3k, e=e, g=g, shortcut=shortcut)# 初始化 DiverseBranchBlock 部分self.diverse_branch_block = DiverseBranchBlock(c2, c2, dbb_kernel_size, stride=dbb_stride, padding=dbb_padding, groups=dbb_groups)def forward(self, x):# 先经过 C3k2 模块x = self.c3k2(x)# 再经过 DiverseBranchBlock 模块x = self.diverse_branch_block(x)return x

2.2 更改init.py文件

关键步骤二:修改modules文件夹下的__init__.py文件,先导入函数

然后在下面的__all__中声明函数

2.3 添加yaml文件

关键步骤三:在/ultralytics/ultralytics/cfg/models/11下面新建文件yolo11_C3k2_DiverseBranchBlock.yaml文件,粘贴下面的内容

  • 目标检测
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2_DiverseBranchBlock, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)
  • 语义分割
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2_DiverseBranchBlock, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [[16, 19, 22], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)
  • 旋转目标检测
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2_DiverseBranchBlock, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [[16, 19, 22], 1, OBB, [nc, 1]] # OBB(P3, P4, P5)

温馨提示:本文只是对yolo11基础上添加模块,如果要对yolo11n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple


# YOLO11n
depth_multiple: 0.50  # model depth multiple
width_multiple: 0.25  # layer channel multiple
max_channel:1024# YOLO11s
depth_multiple: 0.50  # model depth multiple
width_multiple: 0.50  # layer channel multiple
max_channel:1024# YOLO11m
depth_multiple: 0.50  # model depth multiple
width_multiple: 1.00  # layer channel multiple
max_channel:512# YOLO11l 
depth_multiple: 1.00  # model depth multiple
width_multiple: 1.00  # layer channel multiple
max_channel:512 # YOLO11x
depth_multiple: 1.00  # model depth multiple
width_multiple: 1.50 # layer channel multiple
max_channel:512

2.4 在task.py中进行注册

关键步骤四:在parse_model函数中进行注册,添加C3k2_DiverseBranchBlock

先在task.py导入函数

然后在task.py文件下找到parse_model这个函数,如下图,添加C3k2_DiverseBranchBlock

2.5 执行程序

关键步骤五: 在ultralytics文件中新建train.py,将model的参数路径设置为yolo11_C3k2_DiverseBranchBlock.yaml的路径即可 【注意是在外边的Ultralytics下新建train.py】

from ultralytics import YOLO
import warnings
warnings.filterwarnings('ignore')
from pathlib import Pathif __name__ == '__main__':# 加载模型model = YOLO("ultralytics/cfg/11/yolo11.yaml")  # 你要选择的模型yaml文件地址# Use the modelresults = model.train(data=r"你的数据集的yaml文件地址",epochs=100, batch=16, imgsz=640, workers=4, name=Path(model.cfg).stem)  # 训练模型

   🚀运行程序,如果出现下面的内容则说明添加成功🚀  

                   from  n    params  module                                                      arguments0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]2                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]3                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]4                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]5                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]6                  -1  1     87040  ultralytics.nn.modules.block.C3k2            [128, 128, 1, True]7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]8                  -1  1    346112  ultralytics.nn.modules.block.C3k2            [256, 256, 1, True]9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]10                  -1  1    249728  ultralytics.nn.modules.block.C2PSA           [256, 256, 1]11                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']12             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]13                  -1  1    456896  ultralytics.nn.modules.block.C3k2_DiverseBranchBlock[384, 128, 1, False]14                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']15             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]16                  -1  1     32096  ultralytics.nn.modules.block.C3k2            [256, 64, 1, False]17                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]18            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]19                  -1  1     86720  ultralytics.nn.modules.block.C3k2            [192, 128, 1, False]20                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]21            [-1, 10]  1         0  ultralytics.nn.modules.conv.Concat           [1]22                  -1  1    378880  ultralytics.nn.modules.block.C3k2            [384, 256, 1, True]23        [16, 19, 22]  1    464912  ultralytics.nn.modules.head.Detect           [80, [64, 128, 256]]
YOLO11_C3k2_DiverseBranchBlock summary: 339 layers, 2,969,680 parameters, 2,969,664 gradients, 7.7 GFLOPs

3.修改后的网络结构图

4. 完整代码分享

这个后期补充吧~,先按照步骤来即可

5. GFLOPs

关于GFLOPs的计算方式可以查看百面算法工程师 | 卷积基础知识——Convolution

未改进的YOLO11n GFLOPs

改进后的GFLOPs

6. 进阶

可以与其他的注意力机制或者损失函数等结合,进一步提升检测效果

7.总结

通过以上的改进方法,我们成功提升了模型的表现。这只是一个开始,未来还有更多优化和技术深挖的空间。在这里,我想隆重向大家推荐我的专栏——<专栏地址:YOLO11入门 + 改进涨点——点击即可跳转 欢迎订阅>。这个专栏专注于前沿的深度学习技术,特别是目标检测领域的最新进展,不仅包含对YOLO11的深入解析和改进策略,还会定期更新来自各大顶会(如CVPR、NeurIPS等)的论文复现和实战分享。

为什么订阅我的专栏? ——专栏地址:YOLO11入门 + 改进涨点——点击即可跳转 欢迎订阅

  1. 前沿技术解读:专栏不仅限于YOLO系列的改进,还会涵盖各类主流与新兴网络的最新研究成果,帮助你紧跟技术潮流。

  2. 详尽的实践分享:所有内容实践性也极强。每次更新都会附带代码和具体的改进步骤,保证每位读者都能迅速上手。

  3. 问题互动与答疑:订阅我的专栏后,你将可以随时向我提问,获取及时的答疑

  4. 实时更新,紧跟行业动态:不定期发布来自全球顶会的最新研究方向和复现实验报告,让你时刻走在技术前沿。

专栏适合人群:

  • 对目标检测、YOLO系列网络有深厚兴趣的同学

  • 希望在用YOLO算法写论文的同学

  • 对YOLO算法感兴趣的同学等

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/9629.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

三维测量与建模笔记 - 3.1 相机标定基本概念

成像领域有多个标定概念 笔记所说的相机标定主要是指几何标定。 相机几何模型基于小孔成像原理&#xff0c;相关文章很多&#xff0c;上图中R t矩阵是外参矩阵&#xff08;和相机在世界空间中的位姿相关&#xff09;&#xff0c;K矩阵是内参矩阵&#xff08;和相机本身参数相关…

安卓/华为手机恢复出厂设置后如何恢复照片

绝大多数安卓用户都会经历过手机恢复出厂设置&#xff0c;部分用户可能没有意识到手机恢复出厂设置可能会导致数据丢失。但是&#xff0c;当您在 云盘上进行备份或在设备上进行本地备份时&#xff0c;情况就会有所不同&#xff0c;并且当您将 安卓手机恢复出厂设置时&#xff0…

丹摩征文活动 |【AI落地应用实战】文本生成语音Parler-TTS + DAMODEL复现指南

目录 一、Parler-TTS简介1.1、TTS 模型1.2、Parler-TTS 二、Parler-TTS复现流程2.1、创建实例2.2、配置代码与环境2.3、配置预训练模型2.4、Parles-TTS使用 Parler-TTS 是一个由 Hugging Face 开源的文本生成语音 (Text-to-Speech, TTS) 模型。它的设计目的是生成高质量的语音输…

【QT项目】QT6项目之基于C++的通讯录管理系统(联系人/学生管理系统)

目录 一.项目背景 二.创建工程 工程创建 添加文件 联系人类 功能类 三.功能实现 联系人类 person.cpp person.h 查 查询按钮槽函数 返回按钮槽函数 findperson.cpp: 增 addperson.cpp: 删 deleteperson.cpp&#xff1a; 改 changeperson.cpp&#xff1a…

一文详谈领域驱动设计实践

作者&#xff1a;泊静 阿里云开发者 导读 本文作者结合在团队的实践过程&#xff0c;分享了自己对领域驱动设计的一些思考。 了解过领域驱动设计的同学都知道&#xff0c;人们常常把领域驱动设计分为两部分&#xff1a;战术设计和战略设计。这两个概念本身都是抽象的&#xff…

单链表OJ思路

目录 前言 一、移除链表元素 二、反转链表 三、链表的中间结点 四、返回倒数第k个结点 五、合并两个有序链表 六、链表分割 七、链表的回文结构 八、相交链表 九、环形链表 十、环形链表|| 十一、随机链表的赋值 前言 11道单链表OJ题的解题思路。 一、移除链表元素 链接&#…

数据结构与算法——Java实现 54.力扣1008题——前序遍历构造二叉搜索树

不要谩骂以前的自己 他当时一个人站在雾里也很迷茫 ​​​​​​​ ​​​​​​​ ​​​​​​​—— 24.11.6 1008. 前序遍历构造二叉搜索树 给定一个整数数组&#xff0c;它表示BST(即 二叉搜索树 )的 先序遍历 &#xff0c;构造树并返回其根。 保证 对于给定…

【Qt聊天室客户端】单聊与群聊

1. 区分单聊和群聊 逻辑分析 具体实现逻辑 主窗口完善判断单聊还是群聊的逻辑 单聊会话详情入口中&#xff0c;设置头像和昵称 2. 删除好友 直接找到删除好友的按钮&#xff0c;然后实现其删除逻辑即可 具体实现 无法删除好友BUG处理 问题复现&#xff0c;点击好友删除后&…

1.集合体系补充(1)

1.接口式引用 集合的构造&#xff0c;我们需要采用接口类型引用的的方式&#xff0c;这样做的好处就是方便根据业务或者设计上的变化&#xff0c;快速更换具体的实现。 事实上&#xff0c;Java集合设计体系者也是支持我们这样做的&#xff0c;并且集合体系的设计也是如此的。 创…

枚举及优化(一)

第1题 百钱买百鸡 查看测评数据信息 百钱买百鸡问题&#xff1a;公鸡五文钱一只&#xff0c;母鸡三文钱一只&#xff0c;小鸡三只一文钱&#xff0c;用 100 文钱买 100只鸡&#xff0c;公鸡、母鸡、小鸡各买多少只&#xff1f;本程序要求解的问题是&#xff1a;给定一个正整…

自注意力机制

当输入一系列向量&#xff0c;想要考虑其中一个向量与其他向量之间的关系&#xff0c;决定这个向量最后的输出 任意两个向量之间的关系计算 计算其他向量对a1的关联性 多头注意力机制 图像也可以看成一系列的向量&#xff0c;交给自注意力机制处理&#xff0c;CNN是特殊的自注意…

RabbitMQ的死信队列

1.死信的概念 死信简单理解就是因为种种原因&#xff0c;无法被消费的消息. 有死信自然就有死信队列&#xff0c;消息再一个队列中编程死信之后&#xff0c;它能被重新发送到另一个交换器中&#xff0c;这个交换器就是DLX&#xff0c;绑定DLX的队列&#xff0c;就被称为死信队…

十六 MyBatis使用PageHelper

十六、MyBatis使用PageHelper 16.1 limit分页 mysql的limit后面两个数字&#xff1a; 第一个数字&#xff1a;startIndex&#xff08;起始下标。下标从0开始。&#xff09;第二个数字&#xff1a;pageSize&#xff08;每页显示的记录条数&#xff09; 假设已知页码pageNum&…

SpringBoot框架在共享汽车管理中的应用

3系统分析 3.1可行性分析 通过对本共享汽车管理系统实行的目的初步调查和分析&#xff0c;提出可行性方案并对其一一进行论证。我们在这里主要从技术可行性、经济可行性、操作可行性等方面进行分析。 3.1.1技术可行性 本共享汽车管理系统采用SSM框架&#xff0c;JAVA作为开发语…

数字化转型助手 快鲸SCRM系统为企业营销赋能

内容概要 在当今这个快速变化的商业环境中&#xff0c;数字化转型已经成为企业生存与发展的关键要素。无论是零售、制造还是服务行业&#xff0c;企业都深刻意识到传统工作模式的局限性&#xff0c;必须借助先进的技术来优化运营和提升客户体验。快鲸SCRM系统就是这样一款数字…

ZooKeeper在kafka集群中有何作用

Zookeeper 存储的 Kafka 信息 &#xff08;1&#xff09;启动 Zookeeper 客户端。 bin/zkCli.sh &#xff08;2&#xff09;通过 ls 命令可以查看 kafka 相关信息。 [zk: localhost:2181(CONNECTED) 2] ls /kafkazk中有一个节点 consumers 这个里面&#xff0c;老版本0.9版…

Linux操作系统:学习进程_对进程概念的深入了解

目录 前言 开篇 一、进程概念 二、进程的描述与管理 1、如何描述与管理 2、Linux中的PCB-task_struct 3、对进程组织的理解 三、进程的属性 1、系统创建进程 2、查看进程 3、进程的标识符 4、退出进程 1>ctrlc 2>kill命令杀死进程 5、用户进程的创建方式…

Embedding 技术在推荐系统中的应用

参考自《深度学习推荐系统》——王喆&#xff0c;用于学习和记录。 介绍 Embedding&#xff0c;中文直译为“嵌入”&#xff0c;常被翻译为“向量化”或者“向量映射”。它的主要作用是将稀疏向量转换成稠密向量&#xff0c;便于上层深度神经网络处理。事实上&#xff0c;Emb…

Kafka面试题

1、kafka消息发送的流程&#xff1f; 在消息发送时涉及到了两个线程&#xff0c;main 线程 和 sender 线程 &#xff0c;在main线程里面创建了一个双端队列&#xff08;RecordAccumulator&#xff09; ,当双端队列里面的信息满足 一定的条件后&#xff0c; sender线程会拉取双端…

RabbitMQ延迟队列(重要)

RabbitMQ延迟队列 1、延迟队列1.1、延迟队列使用场景1.2、延迟队列实现原理 2、使用rabbitmq-delayed-message-exchange 延迟插件2.1、下载2.2、安装2.2.1、解压2.2.2、启用插件2.2.3、查询安装情况 2.4、示例2.4.1、RabbitConfig配置类&#xff08;关键代码&#xff09;2.4.2、…