CST案例分析:TLM算法仿真5G毫米波手机天线和整机

5G时代,产品复杂,更新换代快,如何快速仿真不同的设计版本是影响研发效率的关键问题。本期我们用达索系统SIMULIA自己的手机模型来演示5G毫米波的仿真。

(图片仅为概念演示,未经达索系统授权不得使用)

 完整的流程如下,先是天线本身的仿真,生成保密模型,然后手机厂商将天线保密模型和手机整合并仿真,得到电磁场的结果,以场源的形式在I-solver积分方程求解器环境下做后处理,得到FCC报告中要求的仿真结果,比如功率密度的分布。

Step 1. 毫米波天线的仿真和保密

这一步最重要的就是天线供应商要提供本地加密好网格的天线保密模组。

由于手机厂商无法看到保密天线的内部结构,所以不能对其调整内部网格;加上天线模组在手机里面可能会有一定的旋转角度,所以天线TLM保密模组在发布之前,供应商对其进行合适的本地加密网格是保证天线和手机整合后的仿真精度的关键。

下面以一个2x2的毫米波贴片天线为例,背面有馈电线,8个端口正交极化。

天线工作频率为毫米波波段n257, 26.5-29.5GHz, 仿真频率为24GHz-32GHz,也可以更宽的频率范围,比如0-40GHz,包括其他的毫米波段。

首先全局网格设置适当加密即可:

推荐本地设置包括,贴片金属厚度上要有一个网格,介质高度上要有三个网格,同轴信号的圆柱形金属直径上要有三个网格。这些都可以在TLM的本地加密功能实现。

注意这里建议用绝对值并且三个方向一样,因为天线将被旋转,绝对值的网格定义才能保证精确度;也正因为这样,网格设置的Specials里面,snapping就可以不勾选。有了本地加密,face refinement可以选择不需要。Smooth mesh with equilibrate ratio为1.25,网格尺寸变化比较平滑。

Limit octree cell size near to model to 是限制结构内部的最大网格,根据馈点处的结构尺寸适当定义。其他设置之前TLM相关文章也有解释和推荐过:

 

下面展示的是TLM的Octree网格在lumping之后,比正常的延展的六面体网格会少很多。密集的网格只聚集在结构周围,这样就允许结构旋转而网格数不会剧增。

TLM网格剖分之后,还可以得到金属的连接信息,用来分析是开路还是短路:

下面S11结果表示,用推荐的网格设置,不同旋转角度得到同样的结果,说明网格准确性非常好。

也可以和FEM频域有限元比较一下结果,用来互相验证仿真设置的精确度。下图中两种算法拿到一致的结果:(下图的天线模型略有不同,所以S11和上图不一样)

 比较不同频点的远场结果,TLM和FEM的增益误差可控制在0.1dB以内:

单独天线来讲,仿真时间TLM用GPU加速一般都是十几分钟甚至几分钟之内,内存也就100-200MB左右。而FEM则需要差不多1个小时,内存通常需要GB级。

最后对模型进行保密就可以了,这里无需对端口保密,之前的本地加密网格设置也会在保密模型内部保留下来。

 Step 2. 天线模型和手机模型的整合

第二步是手机厂商的仿真,这里我们用两个天线原模型分别放在演示手机模型上下两个位置,用保密模型效果也是一样。所以手机模型整机端口数为16,手机内部结构略有简化,但是多层的PCB板,柔性PCB,各种频段天线仍然是都包括在内。

手机的全局网格设置和天线的基本一致,屏幕为多层结构,需要本地加密一些:

Cell lumping 之后的网格数为千万级,相比Cell lumping之前网格数(亿级)减少差不多10倍。

一般我们在n257波段看三个频点就够了,这里定义三个场源和三个远场监视器。场源是为了导出用于后处理得到功率密度,远场是要看查看天线效果并且在接下来的收敛标准需要用到。这里之所以不直接定义功率监视器或电场磁场监视器,是因为我们要节省三维数据量,5G的波束扫描需要多个端口,加上频点多,如果不加控制,三维场很容易达到上百个,仿真效率大大降低,硬盘也将占据大量空间。

场源是等效的二维数据,只是在用户自定义的盒子表面;远场是三维数据,目前还需要定义。

收敛标准是个时域的小技巧。通常我们都是看能量衰减,比如-40dB甚至更低,但这里能量是指宽频的能量,不是所有频率都容易衰减。所以我们可以用自定义收敛标准替代能量衰减,比如5G天线更关心工作频段的S11反射和辐射功率的准确性,所以我们可以选Reflection S-Parameters和All Radiated Power都是收敛到0.001,或是根据需要设的更低,然后检查两次,确保收敛曲线稳定下来。这里的辐射功率收敛就和之前的远场监视器计算挂钩了。

另外,Maximum Solver Duration 的 Time=2ns,就是求解器最长仿真时间。一般以手机的尺寸,1ns以内信号是足够传播和辐射开,所以2ns只是确保总时间不要太久。两个收敛标准通常在1-2ns左右就可以将仿真停下,仿真结束之后可以查看收敛曲线,确保结果达到要求,这样就控制仿真总时间,快速而高效。

上图可看到我们在1.6ns左右停下来,如果这时候查看能量曲线,其实也就只达到-20~-30dB左右。

下图是天线S11在手机中的结果:

 Step 3. 用场源提取功率密度

同样是手机厂商的工作范畴。下图是8个场源导入到I-solver里面,对应的是4个端口,双极化。实际上场源可以达到上百个。我们提供新的Macro宏脚本可以从上一步的手机仿真cst文件中自动识别并导入所有的场源,还可以自动导入激励的振幅相位表来做波束扫描。有需要的用户可联系CST的技术人员。

导入场源盒子之后,I-solver仿真就非常简单了,全局网格适当加密,求解器精确度不需要很高,网格较少。

用Macro宏脚本设置三维结果的采样密度:

还需定义E和H场监视器。这里主要是利用E和H的二维平面定义,比如在手机上方一定距离的平面上,我们关心功率密度的分布。仿真简单,速度也很快。

下图为电场在x=-8位置的结果:

不放心的用户也可以在之前手机TLM模型里面定义同样的电场磁场比较一下,结果应该相同:

 下面就是用后处理算功率密度,磁场的共轭和电场叉积。

 

另一个后处理可以算局部均值,比如下图是按4cm^2均值后的功率密度图,可见分布更平滑。

 

 最后划重点:

1.     TLM 算法手动设置略多一些,在5G毫米波手机天线方面仿真具有网格优势。

2.    功率密度的提取可在CST中完成,利用场源的替代方法可以避免生成大量三维数据,占用资源。

3.     仿真时间上,TLM支持GPU加速,同时推荐分布式计算同时激励多个端口,整机仿真可在几小时内完成。

(本案例手机模型,0-35GHz, 两个GV100 GPU, lumping后4千万网格,仅用10%GPU内存,一台机器16个端口单独激励,一共10小时左右,若多端口同时激励,几小时完全可以)

4.     本案例中提到的Macro宏脚本请与CST技术人员联系。

今后我们还会持续更新整机仿真的流程和新功能,比如更多的后处理,比如波束、EIRP和CDF等等。


【推荐内容】

CST如何设置电压监视器?达索总代理思茂信息

CST如何设置电流监视器?达索一级代理商思茂信息

CST如何设置场探针?达索正版软件代理商

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/8858.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

小猿口算炸鱼脚本

目录 写在前面: 一、关于小猿口算: 二、代码逻辑 1.数字识别 2.答题部分 三、代码分享: 补充:软件包下载 写在前面: 最近小猿口算已经被不少大学生攻占,小学生直呼有挂。原本是以为大学生都打着本…

【debug】QT 相关问题error汇总

总结一下碰到过的所有问题error以及解决方案 qt的UI更新之后构建后发现没有变化 取消项目中的Shadow build的勾选,作用是取消影子构建,此后构建目录与源码处于同一目录,每次编译更新程序使用的UI文件error: ‘class QWidget’ has no member…

滑动窗口最大值

239. 滑动窗口最大值 - 力扣(LeetCode) 题目描述 给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。 返回 滑动窗口中的最大值 。 …

GEE 案例——利用哨兵-2 图像时间序列和谷歌地球引擎云计算自动绘制和监测香港海洋水质参数

目录 简介 结论 代码 结果 APP链接 引用 简介 对沿海水质的持续监测对于水资源管理和海洋生态系统的可持续性至关重要。 遥感数据(如哨兵-2 卫星图像)可提供用于时间序列分析的高分辨率观测数据,而基于云的谷歌地球引擎(GE…

Redis4:Redis的Java客户端

欢迎来到“雪碧聊技术”CSDN博客! 在这里,您将踏入一个专注于Java开发技术的知识殿堂。无论您是Java编程的初学者,还是具有一定经验的开发者,相信我的博客都能为您提供宝贵的学习资源和实用技巧。作为您的技术向导,我将…

基于Java Web的传智播客crm企业管理系统的设计与实现

项目描述 临近学期结束,还是毕业设计,你还在做java程序网络编程,期末作业,老师的作业要求觉得大了吗?不知道毕业设计该怎么办?网页功能的数量是否太多?没有合适的类型或系统?等等。这里根据疫情当下,你想解决的问…

【Eclipse系列】eclipse安装与常规配置(含插件)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言 一、下载与安装 二、常规设置 1.1.设置工作空间(workspace) 1.2.设置字体和字体大小 ​编辑 1.3.设置编码 1.4.去除验证(validation) 1.5.去除单词验证(spelli…

抗辐照MCU芯片工艺解析:如何保障芯片的可靠性

行星探索、轨道飞行器任务和空间研究在内的太空项目需要创新的航天器系统技术提供通信与处理功能。随着商业航天的发展,对于航天电子系统需要考虑高可靠与高性能的同时,还需要考虑降低开发成本和缩短上市时间。 以MCU芯片AS32A401为例,该芯片…

qt QKeySequence详解

1、概述 QKeySequence 是 Qt 框架中的一个类,用于表示和处理键盘快捷键序列。它提供了一种方便的方式来解析、存储和比较键盘快捷键,这些快捷键通常用于触发应用程序中的特定操作或命令。QKeySequence 支持多种格式的快捷键表示,包括单个按键…

【RMA】基于知识注入和模糊学习的多模态歧义分析

abstract 多模态情感分析(MSA)利用互补的多模态特征来预测情感极性,主要涉及语言、视觉和音频三种模态。现有的多模态融合方法主要考虑不同模态的互补性,而忽略了模态之间的冲突所导致的歧义(即文本模态预测积极情绪&…

移动取证和 Android 安全

当今的数字时代已经产生了许多技术进步,无论是智能手机还是虚拟现实、人工智能和物联网 (IoT) 等下一代基础技术。 智能手机已不再只是奢侈品,而是我们生存所必需的东西。根据各种统计数据,如今全球有超过 50% 的人使用手机。 由于数据存储…

【Linux】简易版shell

文章目录 shell的基本框架PrintCommandLineGetCommandLineParseCommandLineExecuteCommandInitEnvCheckAndExecBuildCommand代码总览运行效果总结 shell的基本框架 要写一个命令行我们首先要写出基本框架。 打印命令行获取用户输入的命令分析命令执行命令 基本框架的代码&am…

Java 枚举

目录 枚举是什么 常用方法 构造方法 枚举的优缺点 枚举和反射 实现单例模式 枚举是什么 枚举(enum):是一种特殊的类,用于定义一组常量,将其组织起来。枚举使得代码更具有可读性和可维护性,特别是在处…

【梯度下降法优化】随机梯度下降、牛顿法、动量法、Nesterov、AdaGrad、RMSprop、Adam

本文理论参考王木头的视频: “随机梯度下降、牛顿法、动量法、Nesterov、AdaGrad、RMSprop、Adam”,打包理解对梯度下降法的优化_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1r64y1s7fU/?spm_id_from333.999.0.0&vd_sourceecbdfcacb078d0…

五个高质量伤感视频素材资源站,帮你快速找到完美创作素材

在制作短视频、MV或者广告时,伤感主题的视频素材往往能触动观众的情感,让作品更具共鸣。无论是表达分手、离别,还是展现孤独与失落,合适的伤感素材对情感类创作至关重要。为帮助创作者找到优质的视频素材,以下推荐5个高…

天正建筑T20V8

链接: https://pan.baidu.com/s/1k-PcXJxHWPh3-6yAIfcaPg提取码: dvyn

JavaScript 实现文本转语音功能

全篇大概2000 字(含代码),建议阅读时间10分钟。 引言 我将向大家展示如何使用 JavaScript 和 Web Speech API 快速实现一个“文本转语音”的 Web 应用。通过这个教程,你将了解如何让浏览器将输入的文本朗读出来。 预览效果 一、…

DNS域名详细解析详解

文章目录 DNS域名详细解析详解一、引言二、DNS域名解析过程1、DNS解析概述1.1、DNS解析的基本步骤 2、代码示例 三、DNS查询类型1、递归查询2、迭代查询 四、总结 DNS域名详细解析详解 一、引言 在互联网的世界里,域名和IP地址是两个不可或缺的概念。IP地址是计算…

函数计算——文档与网页数据提取工具(MinerU)应用实践

1 引言 在信息爆炸的时代,AI研究者面临着从海量文档中提取高质量数据的挑战。随着大语言模型在各个领域的广泛应用,有效地处理和整合文档信息成为了基础性的任务。这些文档形式多样,包括学术文献、行业报告、会议PPT、课本、说明书及合同单据…

【网络】应用层——HTTP协议

> 作者:დ旧言~ > 座右铭:松树千年终是朽,槿花一日自为荣。 > 目标:了解什么是HTTP协议。 > 毒鸡汤:有些事情,总是不明白,所以我不会坚持。早安! > 专栏选自:网络 &g…