【数据集】【YOLO】【目标检测】口罩佩戴识别数据集 1971 张,YOLO佩戴口罩检测算法实战训练教程!

数据集介绍

数据集口罩佩戴检测数据集 1971 张,目标检测,包含YOLO/VOC格式标注

数据集中包含1种分类:{'0': 'face_mask'},佩戴口罩

数据集来自国内外图片网站和视频截图。

检测场景为城市街道、医院、商场、机场、车站、办公大楼、施工地等人员密集的场所人员口罩佩戴检测,可用于智慧城市、智慧园区、智慧医疗等,服务于保护人员安全、疫情防控工作

数据集当中含有626张负样本数据,内容是不戴口罩的人脸图像数据,方便模型进行区分识别。

负样本:

一、数据概述

口罩佩戴检测的重要性

在当前的公共卫生和安全领域,口罩佩戴识别技术具有广泛的应用需求。随着全球疫情的持续影响,口罩已成为日常生活中不可或缺的防护用品。在公共场所(如机场、车站、商场等)、医疗保健环境以及执法和安全场景中,准确识别和监测口罩佩戴情况对于保障公众健康和安全具有重要意义。因此,开发一种高效、准确的口罩佩戴识别算法显得尤为重要。

实现原理

基于YOLO的口罩佩戴识别算法利用卷积神经网络提取图像中的特征,并通过单次前向传播预测图像中是否存在口罩以及佩戴方式是否正确。算法首先将图像划分为网格单元,然后为每个网格单元分配多个锚框,通过预测每个锚框的置信度和偏移量来确定图像中是否存在口罩以及其位置。

基于YOLO的口罩佩戴识别算法

实现口罩佩戴识别,数据集包含佩戴口罩和不佩戴口罩人员的图像数据集。数据集包含足够的样本以覆盖不同的面部特征、口罩类型以及佩戴方式。然后,使用YOLO算法对数据集进行训练,以学习口罩佩戴的特征和模式。

该数据集含有1971张图片,包含Pascal VOC XML格式和YOLO TXT格式,用于训练和测试城市街道、医院、商场、机场、车站、办公大楼、施工地等人员密集的场所人员口罩佩戴检测

图片格式为jpg格式,标注格式分别为:

YOLO:txt

VOC:xml

数据集均为手工标注,保证标注精确度。

二、数据集文件结构

face_mask/

——Annotations/

——images/

——labels/

——data.yaml

  • Annotations文件夹为Pascal VOC格式的XML文件 ;
  • images文件夹为jpg格式的数据样本;
  • labels文件夹是YOLO格式的TXT文件;
  • data.yaml是数据集配置文件,包含口罩检测的目标分类和加载路径。

三、数据集适用范围 

  • 目标检测场景
  • yolo训练模型或其他模型
  • 城市街道、医院、商场、机场、车站、办公大楼、施工地等人员密集的场所人员口罩佩戴检测
  • 智慧城市、智慧园区、智慧医疗等,服务于保护人员安全、疫情防控工作

四、数据集标注结果 

​​

1、数据集内容 

  1. 多角度场景:包含人脸自拍视角、监控视角等;
  2. 标注内容:names: ['face_mask'],总计1个分类;
  3. 负样本:数据集当中含有626张负样本数据,内容是不戴口罩的人脸图像数据,方便模型进行区分识别
  4. 图片总量:1971张图片数据;
  5. 标注类型:含有Pascal VOC XML格式和yolo TXT格式;

五、训练过程

1、导入训练数据

下载YOLOv8项目压缩包,解压在任意本地workspace文件夹中。

下载YOLOv8预训练模型,导入到ultralytics-main项目根目录下。

​​​​

ultralytics-main项目根目录下,创建data文件夹,并在data文件夹下创建子文件夹:Annotations、images、imageSets、labels,其中,将pascal VOC格式的XML文件手动导入到Annotations文件夹中,将JPG格式的图像数据导入到images文件夹中,imageSets和labels两个文件夹不导入数据。

data目录结构如下:

data/

——Annotations/   //存放xml文件

——images/          //存放jpg图像

——imageSets/

——labels/

整体项目结构如下所示:

2、数据分割

首先在ultralytics-main目录下创建一个split_train_val.py文件,运行文件之后会在imageSets文件夹下将数据集划分为训练集train.txt、验证集val.txt、测试集test.txt,里面存放的就是用于训练、验证、测试的图片名称。

import os
import randomtrainval_percent = 0.9
train_percent = 0.9
xmlfilepath = 'data/Annotations'
txtsavepath = 'data/ImageSets'
total_xml = os.listdir(xmlfilepath)num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)ftrainval = open('data/ImageSets/trainval.txt', 'w')
ftest = open('data/ImageSets/test.txt', 'w')
ftrain = open('data/ImageSets/train.txt', 'w')
fval = open('data/ImageSets/val.txt', 'w')for i in list:name = total_xml[i][:-4] + '\n'if i in trainval:ftrainval.write(name)if i in train:ftrain.write(name)else:fval.write(name)else:ftest.write(name)ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

3、数据集格式化处理

这段代码是用于处理图像标注数据,将其从XML格式(通常用于Pascal VOC数据集)转换为YOLO格式。

convert_annotation函数

  • 这个函数读取一个图像的XML标注文件,将其转换为YOLO格式的文本文件。

  • 它打开XML文件,解析树结构,提取图像的宽度和高度。

  • 然后,它遍历每个目标对象(object),检查其类别是否在classes列表中,并忽略标注为困难(difficult)的对象。

  • 对于每个有效的对象,它提取边界框坐标,进行必要的越界修正,然后调用convert函数将坐标转换为YOLO格式。

  • 最后,它将类别ID和归一化后的边界框坐标写入一个新的文本文件。

import xml.etree.ElementTree as ET
import os
from os import getcwdsets = ['train', 'val', 'test']
classes = ['face_mask'] # 根据标签名称填写类别
abs_path = os.getcwd()
print(abs_path)def convert(size, box):dw = 1. / (size[0])dh = 1. / (size[1])x = (box[0] + box[1]) / 2.0 - 1y = (box[2] + box[3]) / 2.0 - 1w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn x, y, w, hdef convert_annotation(image_id):in_file = open('data/Annotations/%s.xml' % (image_id), encoding='UTF-8')out_file = open('data/labels/%s.txt' % (image_id), 'w')tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):difficult = obj.find('difficult').textcls = obj.find('name').textif cls not in classes or int(difficult) == 1:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text),float(xmlbox.find('xmax').text),float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))b1, b2, b3, b4 = b# 标注越界修正if b2 > w:b2 = wif b4 > h:b4 = hb = (b1, b2, b3, b4)bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')wd = getcwd()
for image_set in sets:if not os.path.exists('data/labels/'):os.makedirs('data/labels/')image_ids = open('data/ImageSets/%s.txt' % (image_set)).read().strip().split()list_file = open('data/%s.txt' % (image_set), 'w')for image_id in image_ids:list_file.write(abs_path + '/data/images/%s.jpg\n' % (image_id))convert_annotation(image_id)list_file.close()

4、修改数据集配置文件

train: ./images/train/
val: ./images/valid/# number of classes
nc: 1# class names
names: ['face_mask']

5、执行命令

执行train.py

model = YOLO('yolov8s.pt')
results = model.train(data='data.yaml', epochs=200, imgsz=640, batch=16, workers=0)

也可以在终端执行下述命令:

yolo train data=data.yaml model=yolov8s.pt epochs=200 imgsz=640 batch=16 workers=0 device=0

6、模型预测 

你可以选择新建predict.py预测脚本文件,输入视频流或者图像进行预测。

代码如下:

import cv2
from ultralytics import YOLO# Load the YOLOv8 model
model = YOLO("./best.pt") # 自定义预测模型加载路径# Open the video file
video_path = "./demo.mp4" # 自定义预测视频路径
cap = cv2.VideoCapture(video_path) # Get the video properties
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # Be sure to use lower case
out = cv2.VideoWriter('./outputs.mp4', fourcc, fps, (frame_width, frame_height)) # 自定义输出视频路径# Loop through the video frames
while cap.isOpened():# Read a frame from the videosuccess, frame = cap.read()if success:# Run YOLOv8 inference on the frame# results = model(frame)results = model.predict(source=frame, save=True, imgsz=640, conf=0.5)results[0].names[0] = "道路积水"# Visualize the results on the frameannotated_frame = results[0].plot()# Write the annotated frame to the output fileout.write(annotated_frame)# Display the annotated frame (optional)cv2.imshow("YOLOv8 Inference", annotated_frame)# Break the loop if 'q' is pressedif cv2.waitKey(1) & 0xFF == ord("q"):breakelse:# Break the loop if the end of the video is reachedbreak# Release the video capture and writer objects
cap.release()
out.release()
cv2.destroyAllWindows()

也可以直接在命令行窗口或者Annoconda终端输入以下命令进行模型预测:

yolo predict model="best.pt" source='demo.jpg'

六、获取数据集 

戳我头像获取数据,或者主页私聊博主哈~

基于QT的目标检测可视化界面

一、环境配置

# 安装torch环境
pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple
# 安装PySide6依赖项
pip install PySide6 -i https://pypi.tuna.tsinghua.edu.cn/simple
# 安装opencv-python依赖项
pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple

二、使用说明

​​​​​

界面功能介绍:

  • 原视频/图片区:上半部分左边区域为原视频/图片展示区;
  • 检测区:上半部分右边区域为检测结果输出展示区
  • 文本框:打印输出操作日志,其中告警以json格式输出,包含标签框的坐标,标签名称等
  • 加载模型:下拉框绑定本地文件路径,按钮加载路径下的模型文件;
  • 置信度阈值自定义检测区的置信度阈值,可以通过滑动条的方式设置
  • 文件上传:选择目标文件,包含JPG格式和MP4格式
  • 开始检测:执行检测程序;
  • 停止:终止检测程序;

 三、预测效果展示

1、图片检测

​​​​​

切换置信度再次执行:

​​​​​

上图左下区域可以看到json格式的告警信息,用于反馈实际作业中的管理系统,为管理员提供道路养护决策 。

2、视频检测 

​​​​​

3、日志文本框

四、前端代码 

class MyWindow(QtWidgets.QMainWindow):def __init__(self):super().__init__()self.init_gui()self.model = Noneself.timer = QtCore.QTimer()self.timer1 = QtCore.QTimer()self.cap = Noneself.video = Noneself.file_path = Noneself.base_name = Noneself.timer1.timeout.connect(self.video_show)def init_gui(self):self.folder_path = "model_file"  # 自定义修改:设置文件夹路径self.setFixedSize(1300, 650)self.setWindowTitle('目标检测')  # 自定义修改:设置窗口名称self.setWindowIcon(QIcon("111.jpg"))  # 自定义修改:设置窗口图标central_widget = QtWidgets.QWidget(self)self.setCentralWidget(central_widget)main_layout = QtWidgets.QVBoxLayout(central_widget)# 界面上半部分: 视频框topLayout = QtWidgets.QHBoxLayout()self.oriVideoLabel = QtWidgets.QLabel(self)# 界面下半部分: 输出框 和 按钮groupBox = QtWidgets.QGroupBox(self)groupBox.setStyleSheet('QGroupBox {border: 0px solid #D7E2F9;}')bottomLayout = QtWidgets.QHBoxLayout(groupBox)main_layout.addWidget(groupBox)btnLayout = QtWidgets.QHBoxLayout()btn1Layout = QtWidgets.QVBoxLayout()btn2Layout = QtWidgets.QVBoxLayout()btn3Layout = QtWidgets.QVBoxLayout()# 创建日志打印文本框self.outputField = QtWidgets.QTextBrowser()self.outputField.setFixedSize(530, 180)self.outputField.setStyleSheet('font-size: 13px; font-family: "Microsoft YaHei"; background-color: #f0f0f0; border: 2px solid #ccc; border-radius: 10px;')self.detectlabel = QtWidgets.QLabel(self)self.oriVideoLabel.setFixedSize(530, 400)self.detectlabel.setFixedSize(530, 400)self.oriVideoLabel.setStyleSheet('border: 2px solid #ccc; border-radius: 10px; margin-top:75px;')self.detectlabel.setStyleSheet('border: 2px solid #ccc; border-radius: 10px; margin-top: 75px;')topLayout.addWidget(self.oriVideoLabel)topLayout.addWidget(self.detectlabel)main_layout.addLayout(topLayout)

五、代码获取

YOLO可视化界面

戳我头像获取数据,或者主页私聊博主哈~

注:以上均为原创内容,转载请私聊!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/7545.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

实测讯飞智作,一张照片定制属于自己的数字人

Datawhale亲测 AI应用:讯飞智作 只用一张照片,就可以定制属于自己的数字人。 这是大模型给数字人领域带来的最新震撼。 就在两周前的 AI 开发者 Talk 合肥站活动上,我们 Datawhale 的一名小伙伴玉鑫化身成数字人亮相大屏幕,为参加…

乡村景区一体化系统(门票,餐饮,便利店,果园,娱乐,停车收费

一、一体化优势 1. 提升游客体验:游客可以通过一个系统方便地完成各种消费和预订,无需在不同的地方分别处理,节省时间和精力,使游玩过程更加顺畅和愉快。 2. 提高管理效率:景区管理者能够在一个平台上集中管理多个业…

安卓编程最方便的读写资料类SharedPreferences,多个APP共享

本文介绍Android平台进行数据存储的五大方式,分别如下: 1 使用SharedPreferences存储数据 2 文件存储数据 3 SQLite数据库存储数据 4 使用ContentProvider存储数据 5 网络存储数据 下面详细讲解这五种方式的特点 第一种: 使用SharedPreferences存储数据 …

[Docker#1] 专栏前言 | 亿级高并发架构演进之路

目录 目标 一.前期演进 1. 单机架构 2. 应用数据分离架构 3. 应用集群架构 4. 读写分离/主从分离架构 5. 冷热分离架构 二. 架构 分布式数据库架构 微服务架构 容器编排架构 三. An Internet Application Architecture 理解 上层传输 框架 数据处理 主要思想 …

初识AI大模型,ollama使用,llama factory大模型微调,lama.cpp模型转换guff

最近了解了下生成式AI对话,下面是自己的一些尝试记录。 ollama 安装及使用 1、安装 我是在windows环境下安装的,很简单,访问:https://ollama.com/ ,下载windows安装包,打开安装就行了。 cmd输入ollama -v检…

Mybatis、Mybatis-Plus 调用同一个组件的查询时遇到的坑

Mybatis、Mybatis-Plus 调用同一个组件的查询时遇到的坑 Mybais-plus配置了驼峰自动命名,所以不需要在SQL里转化查询。

ssm070基于SSM框架的校园代购服务订单管理系统的设计与实现+vue(论文+源码)_kaic

毕业设计 题 目: 校园代购服务订单管理系统 作 者: 学 号: 所属学院: 专业年级: 学校导师: 职 称: 班级导师: 职 称: 完成时间…

ECharts折线图背景渐变设置

目录 引入 1.在一个HTML文件中编写两个图表 2.渐变背景 引入 如何在一个HTML文件中编写两个图表:(这个例子基于这个篇文章的基础)一篇搞懂前端获取数据-CSDN博客 一个例子: 1.在一个HTML文件中编写两个图表 重点在于名字的不重…

Webserver(4.6)poll和epoll

目录 pollclient.cpoll.c epollepoll.cclient.c epoll的两种工作模式水平触发边沿触发 poll poll是对select的一个改进 select的缺点在于每次都需要将fd集合从用户态拷贝到内核态,开销很大。每次调用select都需要在内核遍历传递进来的所有fd,这个开销也…

提高交换网络可靠性之认识STP根桥与端口角色

转载请注明出处 该实验旨在学习如何选举根桥与识别端口角色。 1.三台交换机按要求连线,改名,分别为S1,S2,S3,以S1为例: 2.在S1上配置优先级为28672 同理,在交换机S2和S3上配置其优先级为32768&…

qt QTextDocument详解

1、概述 QTextDocument是Qt框架中用于处理文本文档的类,它提供了丰富的功能和接口,用于创建、编辑和格式化文本内容。该类能够保存格式化的文本,是结构化富文本文档的容器,支持样式文本和各种文档元素,如列表、表格、…

【UE5】在材质中实现球形法线技术,常用于改善植物等表面的渲染效果

在材质中实现球形法线,这种技术常用于植被渲染等场景。通过应用球形法线可以显著提升植物再低几何体情况下的光照效果。 三二一上截图! 当然也可以用于任何你希望模型圆润的地方,下图中做了一个Cube倒角

提高交换网络可靠性之链路聚合

转载请注明出处 该实验为链路聚合的配置实验。 1.改名,分别将交换机1和交换机2改名为S1,S2,然后查看S1,S2的STP信息。以交换机1为例👇。 2.交换机S1,S2上创建聚合端口,将端口加入聚合端口。以S…

ZISUOJ 2024算法基础公选课练习一(3)

前言、 接&#xff08;2&#xff09;后完成I-J两道题 一、题目总览 二、具体题目 2.1 问题 I: 帆帆的图&#xff1a; 思路&#xff1a; 考察拓扑排序和图论&#xff08;拓扑排序也是排序&#xff0c;<滑稽>&#xff09;&#xff0c;都是模板&#xff0c;我就直接拿去…

窨井监测遥测终端RTU IP68防水强信号穿透力

在窨井的潮湿 黑暗和腐蚀性环境中 常规物联网设备往往难以生存 如何突破层层环境挑战 轻松应对极端条件 确保信号 24h不掉线&#xff0c;不延迟 不仅是对技术的突破 更是对恶劣环境的征服 ↓↓↓ 坚守 ——严苛环境下的工业设备 计讯物联工业级设备&#xff0c;专为恶劣环境设计…

python opencv3

三、图像预处理2 1、图像滤波 为图像滤波通过滤波器得到另一个图像。也就是加深图像之间的间隙&#xff0c;增强视觉效果&#xff1b;也可以模糊化间隙&#xff0c;造成图像的噪点被抹平。 2、卷积核 在深度学习中&#xff0c;卷积核越大&#xff0c;看到的信息越多&#xff0…

Mac上的免费压缩软件-FastZip使用体验实测

FastZip是Mac上的一款免费的压缩软件&#xff0c;分享一下我在日常使用中的体验 压缩格式支持7Z、Zip&#xff0c;解压支持7Z、ZIP、RAR、TAR、GZIP、BZIP2、XZ、LZIP、ACE、ISO、CAB、PAX、JAR、AR、CPIO等所有常见格式的解压 体验使用下来能满足我所有的压缩与解压的需求&a…

网络自动化04:python实现ACL匹配信息(主机与主机信息)

目录 背景分析代码代码解读代码总体结构1. load_pattern_from_excel 函数2. match_and_append_pattern 函数3. main 函数总结 最终的效果&#xff1a; 今天不分享netmiko&#xff0c;今天分享一个用python提升工作效率的小案例&#xff1a;acl梳理时的信息匹配。 背景 最近同事…

Linux之sed命令详解

文章目录 &#x1f34a;自我介绍&#x1f34a;sed概述&#x1f34a;sed语法讲解格式&#xff1a;options 命令选项{commmand}[flags] &#x1f34a;场景训练 你的点赞评论就是对博主最大的鼓励 当然喜欢的小伙伴可以&#xff1a;点赞关注评论收藏&#xff08;一键四连&#xff…

用ChatGPT完成高质量文献综述全过程实操指南,用高级学术版专业应用gpts轻松搞定

文献综述在学术研究中占据核心地位,不仅为研究提供坚实的理论基础,也是创新观点和理论框架构建的重要支柱。然而,撰写高质量的文献综述往往是一项复杂且繁重的工作,需要研究者对领域内的文献进行广泛筛选、分类、对比和整合。该过程不仅考验研究者的分析能力,还要求对文献…