网络自动化04:python实现ACL匹配信息(主机与主机信息)

目录

  • 背景
  • 分析
  • 代码
    • 代码解读
      • 代码总体结构
      • 1. `load_pattern_from_excel` 函数
      • 2. `match_and_append_pattern` 函数
      • 3. `main` 函数
      • 总结
    • 最终的效果:

今天不分享netmiko,今天分享一个用python提升工作效率的小案例:acl梳理时的信息匹配

背景

最近同事在梳理ACL,需要对每一条destination主机的条目,针对该目的地址主机,标记出这台主机的作用。
工作量大,重复性高,易错率高。
所以使用python进行自动化。

分析

  1. 首先,同事给出了一版已经做好匹配的文档,如下图(模拟):
    在这里插入图片描述
  2. 根据给出的excel,拆分出对应的数据,放在一个sheet中,我这里命名为pattern
    第一列为IP,第二列开始为给出的主机信息:
    在这里插入图片描述
  3. 分析python脚本执行思路:
    1. 读取patternsheet中的数据,以字典方式存入,key为第一列的IP,value为后续的主机信息(以列表存储);
    2. 循环对除了pattern sheet的其他sheet,每一行数据的第一列(即acl的每一个rule)去匹配刚刚第一步存储的字典的key,匹配成功后,在这一行后单元格中,填入key对应的value的值。

代码

import pandas as pd
import numpy as npdef load_pattern_from_excel(file_path: str) -> dict:"""从指定的Excel文件中读取'pattern'表内容,并返回一个字典。字典的键为第一列的值,值为每行后续列的内容列表(去除NaN)。参数:file_path (str): Excel文件的路径。返回:dict: 包含键值对的字典,键为第一列的内容,值为该行后续列的列表(去除NaN)。"""# 读取Excel文件中的 'pattern' sheetdf = pd.read_excel(file_path, sheet_name='pattern')# 将第一列作为字典的键,后续列的内容作为值存储在字典中,去除NaNpattern = {row[0]: [item for item in row[1:] if pd.notna(item)] for row in df.itertuples(index=False, name=None)}return patterndef match_and_append_pattern(file_path: str, pattern: dict):"""读取Excel文件中除'pattern'和'indexsheet'之外的所有sheet,检查第一列是否包含pattern中的key,匹配后将对应value的每个元素写入相邻单元格(跳过NaN)。参数:file_path (str): Excel文件的路径。pattern (dict): 包含匹配模式的字典,键为要匹配的字符串,值为需要写入的列表(无NaN)。"""# 读取Excel文件xls = pd.ExcelFile(file_path)# 获取所有sheet名称,排除 'pattern' 和 'indexsheet'sheets_to_process = [sheet for sheet in xls.sheet_names if sheet not in ['pattern', 'indexsheet']]# 创建一个字典来存储每个sheet的更新内容updated_sheets = {}# 遍历需要处理的sheetfor sheet_name in sheets_to_process:# 读取当前sheet的数据df = pd.read_excel(xls, sheet_name=sheet_name)# 遍历第一列的每一行,检查是否包含pattern的keyfor idx, cell_value in enumerate(df.iloc[:, 0]):for key, values in pattern.items():if key in str(cell_value):  # 检查第一列单元格是否包含key# 在匹配的行写入values中的每个非NaN元素start_col = 1  # 从B列开始写入for value in values:if pd.notna(value):  # 仅写入非NaN的值if start_col >= df.shape[1]:df.insert(start_col, f'New_Col_{start_col}', None)  # 添加新列df.iat[idx, start_col] = valuestart_col += 1break  # 只匹配第一个找到的key并写入# 将更新后的DataFrame存储到字典中updated_sheets[sheet_name] = df# 将更新后的内容写回到新的Excel文件中with pd.ExcelWriter('Updated_ACL.xlsx') as writer:for sheet_name, updated_df in updated_sheets.items():updated_df.to_excel(writer, sheet_name=sheet_name, index=False)print("匹配和追加已完成,文件已保存为 'Updated_ACL.xlsx'.")def main():file_path = 'ACL.xlsx'# 加载 pattern 表内容pattern = load_pattern_from_excel(file_path)# 进行匹配并更新其他 sheetmatch_and_append_pattern(file_path, pattern)if __name__ == "__main__":main()

代码解读

这版代码实现了从Excel文件中提取特定的模式(pattern),并将这些模式应用到其他工作表中,对匹配的内容进行扩展性写入。以下是对代码的逐步讲解,以便更详细地了解其逻辑和功能:

代码总体结构

  1. load_pattern_from_excel 函数:从Excel文件的 pattern sheet中读取数据,并生成一个以字典形式存储的 pattern 变量。
  2. match_and_append_pattern 函数:将 pattern 变量的内容应用到 ACL.xlsx 中除 patternindexsheet 之外的所有sheet,找到匹配项后,将模式中对应的内容写入匹配行的指定位置。
  3. main 函数:作为脚本的主函数,负责调用 load_pattern_from_excelmatch_and_append_pattern 函数,完成整个流程。

1. load_pattern_from_excel 函数

def load_pattern_from_excel(file_path: str) -> dict:"""从指定的Excel文件中读取'pattern'表内容,并返回一个字典。字典的键为第一列的值,值为每行后续列的内容列表(去除NaN)。参数:file_path (str): Excel文件的路径。返回:dict: 包含键值对的字典,键为第一列的内容,值为该行后续列的列表(去除NaN)。"""# 读取Excel文件中的 'pattern' sheetdf = pd.read_excel(file_path, sheet_name='pattern')# 将第一列作为字典的键,后续列的内容作为值存储在字典中,去除NaNpattern = {row[0]: [item for item in row[1:] if pd.notna(item)] for row in df.itertuples(index=False, name=None)}return pattern

功能解释

  • load_pattern_from_excel 函数的作用是读取Excel文件中特定的sheet(在这里是pattern)并将其内容格式化为一个字典 pattern
  • 字典的键来自于 pattern sheet 的第一列,表示需要在其他工作表中匹配的字符串。
  • 字典的值是每行后续列的内容列表,并且过滤掉所有 NaN。这意味着,如果有空白单元格,它们不会被纳入到 pattern 中。

实现细节

  • pd.read_excel(file_path, sheet_name='pattern') 读取指定的Excel文件的 pattern sheet。
  • 使用 itertuples 遍历每一行,并构建一个字典推导式 {row[0]: [item for item in row[1:] if pd.notna(item)]},通过列表推导式过滤掉 NaN 值。

2. match_and_append_pattern 函数

def match_and_append_pattern(file_path: str, pattern: dict):"""读取Excel文件中除'pattern'和'indexsheet'之外的所有sheet,检查第一列是否包含pattern中的key,匹配后将对应value的每个元素写入相邻单元格(跳过NaN)。参数:file_path (str): Excel文件的路径。pattern (dict): 包含匹配模式的字典,键为要匹配的字符串,值为需要写入的列表(无NaN)。"""# 读取Excel文件xls = pd.ExcelFile(file_path)# 获取所有sheet名称,排除 'pattern' 和 'indexsheet'sheets_to_process = [sheet for sheet in xls.sheet_names if sheet not in ['pattern', 'indexsheet']]# 创建一个字典来存储每个sheet的更新内容updated_sheets = {}# 遍历需要处理的sheetfor sheet_name in sheets_to_process:# 读取当前sheet的数据df = pd.read_excel(xls, sheet_name=sheet_name)# 遍历第一列的每一行,检查是否包含pattern的keyfor idx, cell_value in enumerate(df.iloc[:, 0]):for key, values in pattern.items():if key in str(cell_value):  # 检查第一列单元格是否包含key# 在匹配的行写入values中的每个非NaN元素start_col = 1  # 从B列开始写入for value in values:if pd.notna(value):  # 仅写入非NaN的值if start_col >= df.shape[1]:df.insert(start_col, f'New_Col_{start_col}', None)  # 添加新列df.iat[idx, start_col] = valuestart_col += 1break  # 只匹配第一个找到的key并写入# 将更新后的DataFrame存储到字典中updated_sheets[sheet_name] = df# 将更新后的内容写回到新的Excel文件中with pd.ExcelWriter('Updated_ACL.xlsx') as writer:for sheet_name, updated_df in updated_sheets.items():updated_df.to_excel(writer, sheet_name=sheet_name, index=False)print("匹配和追加已完成,文件已保存为 'Updated_ACL.xlsx'.")

功能解释

  • 该函数的主要功能是遍历 ACL.xlsx 中所有的工作表(除 patternindexsheet),然后检查每个工作表的第一列中是否包含 pattern 中的任何键。
  • 一旦找到匹配的键,函数会从B列开始,按顺序将 pattern 中对应的值逐个写入单元格,每个值占据一个单元格。如果值为 NaN 则跳过。

实现细节

  1. 读取所有工作表:使用 pd.ExcelFile(file_path) 读取Excel文件,然后过滤出需要处理的工作表。
  2. 遍历每个工作表:使用 for sheet_name in sheets_to_process 逐个读取并处理每个工作表。
  3. 匹配和写入数据
    • for idx, cell_value in enumerate(df.iloc[:, 0]) 遍历第一列的每一行,检查每个单元格是否包含 pattern 中的任何键。
    • 如果匹配成功,则按顺序将 values 列表中的每个元素写入到匹配行的相邻单元格,从 B 列开始(即 start_col = 1)。
    • 在写入时,使用 pd.notna(value) 跳过 NaN 值。
    • 如果需要的列数超过现有列,则动态添加新列 df.insert(start_col, f'New_Col_{start_col}', None)
  4. 保存更新后的工作表:处理完所有工作表后,将结果保存到新的Excel文件 Updated_ACL.xlsx

3. main 函数

if __name__ == "__main__":file_path = 'ACL.xlsx'# 加载 pattern 表内容pattern = load_pattern_from_excel(file_path)# 进行匹配并更新其他 sheetmatch_and_append_pattern(file_path, pattern)

功能解释

  • 首先加载 pattern sheet 的内容并生成 pattern 字典。
  • 然后调用 match_and_append_pattern 函数,对所有目标工作表进行处理并输出结果。

总结

  • 代码逻辑:先构建模式数据字典 pattern,然后匹配并写入其他工作表。
  • 数据写入:匹配成功的 value 列表内容依次写入相邻单元格,跳过 NaN 值。
  • 输出文件:最终将处理结果保存到新文件 Updated_ACL.xlsx

最终的效果:

让每一个sheet都如下图一样:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/7515.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

Linux之sed命令详解

文章目录 🍊自我介绍🍊sed概述🍊sed语法讲解格式:options 命令选项{commmand}[flags] 🍊场景训练 你的点赞评论就是对博主最大的鼓励 当然喜欢的小伙伴可以:点赞关注评论收藏(一键四连&#xff…

用ChatGPT完成高质量文献综述全过程实操指南,用高级学术版专业应用gpts轻松搞定

文献综述在学术研究中占据核心地位,不仅为研究提供坚实的理论基础,也是创新观点和理论框架构建的重要支柱。然而,撰写高质量的文献综述往往是一项复杂且繁重的工作,需要研究者对领域内的文献进行广泛筛选、分类、对比和整合。该过程不仅考验研究者的分析能力,还要求对文献…

Java题目笔记(十四)Date +综合练习

一、时间计算时间比较 import java.util.Date; import java.util.Random;public class Main {public static void main(String[] args) {//需求1Date d1new Date(0L); //从时间原点开始经过了0毫秒long timed1.getTime();timetime1000L*60*60*24*365; //一年的时间d1.setTime(…

【C++练习】计算应发利润总数

题目:计算应发利润总数 问题描述: 某公司根据销售额 x(单位:元)计算应发利润总数 y(单位:元),具体计算规则如下: 如果销售额 x 小于等于 100,000 元&#…

Permissions 0755 for ‘/etc/ssh/ssh_host_rsa_key‘ are too open.问题解决

1、问题背景 代码上库公司git后,将项目上出的程序烧录到设备中,wifi能够正常链接,但是通过wifi链接 ssh登录设备失败。把调试串口引出,查看linux启动log,发现如下打印信息: WARNING: UNPROTECTED PRIVATE KEY FILE! Permissions 075…

企业网络架构基础

1.网络宇宙 似宇宙洪荒,浩瀚无边,深不可测;网络案例似璀璨群星,千变万化,闪耀环宇。学习网络技术似夜观星象,每有所得,便拍案惊奇,夜不能寐 2.企业网络 企业网络已经广泛应用在各行…

Vue 3 的 全局状态管理

1.思路梳理 工厂仓拣货信息:Factory Picking Info (FPI)工厂仓调度信息:Factory Scheduling Info (FSI)DC 收货信息:DC Receiving Info (DCRI)上架信息:Shelving Info (SI)盘点信息:Inventory Count Info (ICI)移位信…

基于Spring Boot的在线装修管理系统的设计与实现,LW+源码+讲解

摘 要 互联网发展至今,无论是其理论还是技术都已经成熟,而且它广泛参与在社会中的方方面面。它让信息都可以通过网络传播,搭配信息管理工具可以很好地为人们提供服务。针对信息管理混乱,出错率高,信息安全性差&#…

神经网络基础--什么是正向传播??什么是方向传播??

前言 本专栏更新神经网络的一些基础知识;这个是本人初学神经网络做的笔记,仅仅堆正向传播、方向传播就行了了一个讲解,更加系统的讲解,本人后面会更新《李沐动手学习深度学习》,会更有详细讲解;案例代码基于pytorch&a…

移动电源充气泵SIC8833应用方案设计

电动充气泵方案基于简单原理,使用时能自动检测轮胎压力。当胎压低于预设值时,电机自动启动,将压缩气体经进气管泵入轮胎。一旦充气泵达到设定的胎压上限,电机将自动关闭。该方案由压力传感器、ADC芯片、主控芯片等核心组件构成。其…

IP Source Guard

一、什么是IP Source Guard IP Source Guard(IPSG)是一种基于 IP/MAC 的端口流量过滤技术,用于防止局域网内的 IP 地址欺骗攻击。 隔绝非法DHCP服务器:通过配置非信任端口,IPSG可以有效阻止非法DHCP服务器向网络中的…

赛元MCU 脱机烧录步骤

烧录设置 生成烧录配置文件 载入配置文件 下载程序到烧录器中 并 对比 脱机烧录 1、 将SC-LINK 使用外部5V电源供电 2、将烧录口对准主板烧录接口 3、busy亮红灯,进入烧录ing,烧录成功后,OK灯亮蓝灯 注意事项 其中工程校验和 可以作为程序…

数字信号处理Python示例(8)使用复数指数函数生成正弦函数和余弦函数

文章目录 前言一、相量叠加原理二、使用旋转相量生成余弦和正弦波的Python代码三、仿真结果及分析写在后面的话 前言 首先给出使用复数指数函数生成正弦函数和余弦函数的数学表达式,然后给出Python仿真代码,并绘制了生成的函数图形,最后给出…

Pr 视频过渡:沉浸式视频 - VR 球形模糊

效果面板/视频过渡/沉浸式视频/VR 球形模糊 Video Transitions/Immersive Video/VR Spherical Blur VR 球形模糊 VR Spherical Blur用于 VR 视频中的模糊式场景切换,模糊效果以球形方式呈现,使画面逐渐模糊或清晰。 自动 VR 属性 Auto VR Properties 默…

智启未来,趣享生活 德国卡赫举办系列新品首发活动

全球最大的清洁设备和清洁解决方案提供商德国卡赫,于11月6日在第七届进博会新品发布平台举办主题为“智启未来,趣享生活”的新品发布会,揭开全球首发新品可折叠式手持清洗机KHB Air以及亚洲首发新品商用清洁机器人KIRA CV 50的神秘面纱。作为…

在Scrapy爬虫中应用Crawlera进行反爬虫策略

在互联网时代,数据成为了企业竞争的关键资源。然而,许多网站为了保护自身数据,会采取各种反爬虫技术来阻止爬虫的访问。Scrapy作为一个强大的爬虫框架,虽然能够高效地抓取网页数据,但在面对复杂的反爬虫机制时&#xf…

【基于PSINS工具箱】以速度为观测量的SINS/GNSS组合导航,UKF滤波

基于【PSINS工具箱】,提供一个MATLAB例程,仅以速度为观测量的SINS/GNSS组合导航(滤波方式为UKF) 文章目录 工具箱程序简述运行结果 代码程序讲解MATLAB 代码教程:使用UKF进行速度观测1. 引言与基本设置2. 初始设置3. U…

【深度学习滑坡制图|论文解读2】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法

【深度学习滑坡制图|论文解读2】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法 【深度学习滑坡制图|论文解读2】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法 文章目录 【深度学习滑坡制图|论文解读2】基于融合CNN-Transformer网络和…

二次封装 el-pagination 组件存在的问题

在使用 Element Plus 组件时,有时会遇到组件不完全符合需求的情况,这时可能需要对其进行二次封装。在封装 Pagination 组件时,我们会发现一些属性和函数无法正常使用,下面将详细探讨这些问题,并提供一下思路和想法。 …

Elasticsearch-linux环境部署

本文主要介绍linux下elasticsearch的部署。通过在一台linux服务器中分别对elasticsearch-6.7.2版本,elasticsearch-7.3.0版本来进行安装,记录在安装elasticsearch-7.3.0版本时出现的异常情况,以及elasticsearch-head的安装。 基础环境 本机已…