【笔记】自动驾驶预测与决策规划_Part6_不确定性感知的决策过程

文章目录

  • 0. 前言
  • 1. 部分观测的马尔可夫决策过程
    • 1.1 POMDP的思想以及与MDP的联系
      • 1.1.1 MDP的过程回顾
      • 1.1.2 POMDP定义
      • 1.1.3 与MDP的联系及区别
        • POMDP 视角
        • MDP 视角
        • 决策次数对最优解的影响
    • 1.2 POMDP的3种常规解法
      • 1.2.1 连续状态的“Belief MDP”方法
        • 1. 信念状态的定义
        • 2. Belief MDP 的过程
        • 3. 问题的求解
        • 4. 值迭代的递推公式
        • 5. 维度爆炸问题
      • 1.2.2 有限前瞻深度策略
        • 1.方法概述
        • 2.求解步骤
        • 3.优化技巧
      • 1.2.3 在MDP中规划
        • 1.主要步骤
        • 2.优缺点
  • 2. EPSILON 系统解析
    • 2.1 自动驾驶决策规划现存问题
    • 2.2 系统概述
    • 2.3 问题描述
    • 2.4 整体流程
  • 3. MARC 解读—— Multipolicy and Risk-aware Contingency Planning for Autonomous Driving
  • 4. 参考链接

0. 前言

本文主要记录课程《自动驾驶预测与决策技术》的学习过程,难免会有很多纰漏,感谢指正。
课程链接:https://www.shenlanxueyuan.com/my/course/700
相关笔记链接:
Part1_自动驾驶决策规划简介
Part2_基于模型的预测方法
Part3_路径与轨迹规划
Part4_时空联合规划
Part5_决策过程

1. 部分观测的马尔可夫决策过程

1.1 POMDP的思想以及与MDP的联系

1.1.1 MDP的过程回顾

1.1.2 POMDP定义

请添加图片描述

1.1.3 与MDP的联系及区别

请添加图片描述
请添加图片描述

在这个“开门与老虎”例子中,解释了 POMDP 和 MDP 的区别与联系。

POMDP 视角

在这个图中,智能体面对两扇门,一扇门后有老虎,另一扇门是逃生的出口。问题在于,智能体无法直接观察门后是什么,必须通过“listen”(听老虎的声音)来推测老虎的位置。

  1. 状态(S0 和 S1):老虎可能在左边(S0),或者在右边(S1)。状态的变化依赖于智能体的行为。
  2. 动作集(A):智能体可以选择听(listen)或直接开左边门(open left)或右边门(open right)。
  3. 观察集:智能体不能直接知道老虎在哪里,但可以通过听老虎的声音获取部分信息。听到左边的声音意味着老虎可能在左边,听到右边的声音则相反。
  4. 观察概率(Pr):当老虎在左边(S0)时,听到左边的声音的概率是 0.85,而听到右边声音的概率是 0.15(有一定的不确定性)。同样,老虎在右边时的观察概率是对称的。
  5. 奖励:开错门导致 -100 分的惩罚,开对门获得 +10 分的奖励,而“听”的行为有一个代价 -1。

在 POMDP 模型中,智能体只能通过“听”这种部分观察行为来推测当前的状态,它无法直接看到老虎的位置。这种不确定性体现了 POMDP 的核心特点——智能体不能完全观察到环境的真实状态,只能基于观察推测。

MDP 视角

如果我们假设智能体可以直接看到老虎的位置,那么这个问题就变成了一个 MDP 问题:

  • 状态:智能体知道老虎的位置。
  • 动作:智能体可以直接选择开哪扇门。
  • 奖励与惩罚:仍然是开错门得到 -100 分,开对门 +10 分。

在 MDP 中,智能体能完全观察到当前状态,因此它可以立即根据观察作出正确的决策,比如看到老虎在左边时就开右边的门,没有不确定性。

决策次数对最优解的影响

请添加图片描述

在“开门与老虎”的 POMDP 问题中,决策次数的不同会影响如何寻找最优解。通过不同的决策时间范围(1次、2次、100次决策)来探索最优策略。

  1. 只能做一次决策

如果只能做一次决策,最优解比较简单,因为你没有时间去“听”并获得更多信息。在这种情况下,你无法改善对状态的认知,只能基于当前的信念状态做出决策。假设初始状态下老虎可能在左边或右边的概率是 50%。

  • 最优策略:此时直接选择开门,因为“听”的行为会消耗 -1 的代价,且你没有足够的回合来平衡这个损失。由于没有任何信息提示,选择任意一扇门的期望是一样的:直接开门会带来 -45 的期望收益(50%概率开对门得到 +10,50%概率开错门得到 -100)。
  1. 可以做两次决策

如果有两次决策机会,策略会更加复杂,因为你可以选择“听”一次,然后根据听到的信息来做更明智的选择。

  • 策略 1:首先执行“listen”行动,通过听到的老虎位置的信息更新你的信念状态。

    • 听到老虎在左边时,你推测老虎确实在左边的概率是 85%,在右边的概率是 15%。
    • 听到老虎在右边时,你推测老虎在右边的概率是 85%,在左边的概率是 15%。
  • 最优策略:通过“listen”获得信息后,你的下一步决策(开左门还是开右门)基于更新后的信念状态。如果听到左边的老虎声音,你应开右门(85%的概率成功),听到右边的声音则开左门。

期望收益

  • 听到老虎在左边:85%概率开对门,期望为 ( 0.85 × 10 + 0.15 × ( − 100 ) = − 4 (0.85 \times 10 + 0.15 \times (-100) = -4 (0.85×10+0.15×(100)=4)。
  • 听到老虎在右边:同理,期望为 -4。
  • 听的代价是 -1,所以最终期望收益为 ( − 4 − 1 = − 5 ) ( -4 - 1 = -5) (41=5)

相比于不听直接开门(期望收益 -45),听一次然后做决策的期望收益更好。

  1. 可以做 100 次决策

如果有 100 次决策机会,这就变成了长期规划的问题。你可以通过反复“听”来更新信念,并最大化未来决策的累积奖励。在这种情况下,你可以多次选择“listen”来降低不确定性,但每次“听”都有代价,因此需要平衡“听”的次数和总期望奖励。

  • 策略

    • 开始时先进行几次“listen”来逐渐提高对老虎位置的把握,直到信念状态足够明确(比如 95% 的信心)。
    • 然后再根据当前的信念选择开门。
  • 最优策略

    • 在较早阶段可以多听几次,但不宜过多,因为每次“listen”都会有 -1 的代价。
    • 在信念足够明确时,停止“listen”,选择开门。如果老虎位置的概率已经非常确定(例如 >95%),继续“听”的收益就不如直接开门的收益高。

在这种长期决策中,POMDP 的策略可以通过动态规划贝尔曼方程来求解,这样可以在多次决策过程中找到最优的策略。

总结:

  • 1次决策:直接开门,期望收益是 -45。
  • 2次决策:先听一次再开门,期望收益是 -5。
  • 100次决策:先听几次(逐渐增加对老虎位置的确定性),然后开门,期望收益可以更高,具体取决于使用的策略优化算法。

在多次决策问题中,通过不断获取信息来更新信念状态可以大幅提升期望收益,这也是 POMDP 的强大之处。请添加图片描述
请添加图片描述

1.2 POMDP的3种常规解法

1.2.1 连续状态的“Belief MDP”方法

请添加图片描述
请添加图片描述

使用Belief MDP 方法在连续状态空间中的基本思路及求解过程:

1. 信念状态的定义

信念状态是对系统当前状态的概率分布。由于在 POMDP 问题中,状态不是完全可观测的,智能体需要根据历史信息(包括过去的动作和观测)推测当前系统的状态,这种推测即信念状态 ( b ) ( b ) (b)

在经典 POMDP 问题中,由于状态是部分可观测的,智能体需要根据所做的观测推断出系统可能处于的状态分布,这个推断称为信念状态(Belief State)

  • 信念状态 ( b ( s ) ) ( b(s) ) (b(s)) 是一个概率分布,表示智能体对系统实际状态的估计。具体来说,信念状态是根据历史的观测、动作、奖励等信息,对当前状态的条件概率分布。对于每一个状态 ( s ) ( s ) (s),信念状态 ( b ( s ) ) ( b(s) ) (b(s)) 表示智能体认为系统处于状态 ( s ) ( s ) (s) 的概率。

  • 将 POMDP 问题转化为信念 MDP 时,我们不再直接处理原始的部分可观测的状态,而是在信念空间上处理这个问题。因此,信念 MDP 具有完全可观测性。

2. Belief MDP 的过程

为了处理部分可观测性问题,POMDP 转化为Belief MDP 问题。Belief MDP的目标是找到在信念空间中的最优策略,即在当前的信念状态下采取什么动作能够最大化期望奖励。

  • 动态模型:系统从信念状态 ( b t ) ( b_t ) (bt) 转移到新的信念状态 ( b t + 1 ) ( b_{t+1} ) (bt+1),通过执行动作 ( a t ) ( a_t ) (at) 并观测到新的观测 ( o ) ( o ) (o) 后,更新信念状态。

  • 奖励函数:对于每一个信念状态,奖励 ( r ( b t , a t ) ) ( r(b_t, a_t) ) (r(bt,at)) 是在信念 ( b t ) ( b_t ) (bt) 下采取动作 ( a t ) ( a_t ) (at) 所带来的即时奖励。

3. 问题的求解

利用值迭代的方法求解信念 Belief MDP 的过程:

  • 期望奖励函数 ( V π ( b 0 ) ) ( V^\pi(b_0)) (Vπ(b0)):给定初始信念 ( b 0 ) ( b_0) (b0) 和策略 ( π ) ( \pi) (π),期望的回报是未来每一个时刻 ( t ) ( t ) (t) 的奖励的加权和,即:
    V π ( b 0 ) = ∑ t = 0 ∞ γ t E [ R ( s t , a t ) ∣ b 0 , π ] V^\pi(b_0) = \sum_{t=0}^{\infty} \gamma^t E[R(s_t, a_t) | b_0, \pi] Vπ(b0)=t=0γtE[R(st,at)b0,π]
    其中 ( γ ) ( \gamma ) (γ)是折扣因子。

  • 最优策略:通过优化该期望回报 ( V π ( b 0 ) ) ( V^\pi(b_0) ) (Vπ(b0)),可以找到一个最优策略 ( π ∗ ) ( \pi^*) (π),即:
    π ∗ = arg ⁡ max ⁡ π V π ( b 0 ) \pi^* = \arg\max_\pi V^\pi(b_0) π=argπmaxVπ(b0)

4. 值迭代的递推公式

为了计算Belief MDP 中每个信念状态的值,可以使用值迭代算法,其递推公式为:
V ∗ ( b ) = max ⁡ a ∈ A [ r ( b , a ) + γ ∑ o ∈ O P ( o ∣ b , a ) V ∗ ( τ ( b , a , o ) ) ] V^*(b) = \max_{a \in A} \left[ r(b, a) + \gamma \sum_{o \in O} P(o | b, a) V^*(\tau(b, a, o)) \right] V(b)=aAmax[r(b,a)+γoOP(ob,a)V(τ(b,a,o))]
这个公式表示,在信念状态 ( b ) ( b) (b) 下,采取动作 ( a ) ( a ) (a) 能带来的最大化的预期回报。这里包括:

  • 即时奖励 ( r ( b , a ) ) ( r(b, a) ) (r(b,a))
  • 未来奖励的加权和,未来的信念状态由信念更新公式 ( τ ( b , a , o ) ) ( \tau(b, a, o) ) (τ(b,a,o)) 计算得到。
5. 维度爆炸问题

Belief MDP 的核心问题是维度爆炸,因为信念状态空间是连续的,而每个信念状态都需要计算其值函数。这在处理高维度的信念空间时,计算量会变得极为庞大,因此通常需要采用近似算法进行求解。

1.2.2 有限前瞻深度策略

这种方法的核心思想是对未来的状态和动作进行有限深度的前瞻,并基于此进行优化,类似于模型预测控制 (MPC) 的思路。

请添加图片描述
请添加图片描述

1.方法概述
  1. 有限前瞻

    • 由于 POMDP 的状态空间通常非常大,完全求解的计算量巨大,因此该方法通过对动作序列和观测进行有限步的前瞻来简化问题。
    • 图中展示了一个状态-动作-观测的搜索树,在树中,智能体从根节点(当前状态)出发,通过一系列动作和观测进行扩展,每次前瞻 ( H ) ( H ) (H)步。
  2. 剪枝策略

    • 为了减少计算量,常常会对某些不太可能的观测进行剪枝,保留更有可能出现的观测结果。这使得状态空间不会呈指数增长,优化计算资源。
  3. 树结构中的节点数

    • 图右侧给出了有限前瞻过程中的节点数计算公式,节点数量随着动作 ( A ) ( A) (A) 和观测 ( O ) (O) (O) 的种类,以及前瞻步数 ( H ) ( H ) (H) 指数级增加。因此,通过剪枝和合理的搜索策略来减少需要评估的节点非常重要。
2.求解步骤
  • 前瞻搜索:从当前状态出发,模拟未来可能的动作和观测序列。每个动作序列对应未来一系列的状态和奖励。
  • 评估策略:在每个前瞻步长结束时,对不同的动作序列进行评估,根据预期回报选择最佳的动作序列。
  • 执行最优动作:基于评估的结果,执行当前最优的第一个动作,并将该动作的观测结果作为下一步的输入,重复上述过程。
3.优化技巧
  • ( α \alpha α)-向量技巧:用于加速计算值函数,使得每一个信念状态可以用一个超平面表示。
  • 蒙特卡洛树搜索(MCTS):该方法可以从当前状态出发,逐步扩展状态和观测序列,通过模拟未来可能的动作结果,减少计算复杂度。

1.2.3 在MDP中规划

请添加图片描述

其核心思想是将概率最大的置信状态作为实际状态来处理,类似于假设系统的状态总是最有可能的那一个。

1.主要步骤
  1. 置信状态假设

    • 假设当前最可能的置信状态代表系统的真实状态,即我们并不处理所有可能的状态,而是聚焦在当前置信度最高的那个状态。
  2. 通过滤波跟踪状态

    • 使用类似于滤波的技术来不断更新和跟踪这个置信状态的概率分布。滤波器会根据新观测来调整系统对当前状态的估计,确保我们使用的状态是最可能的。
  3. 选择最优动作

    • 在每个时刻,根据当前估计的最可能状态,选择该状态下的最优动作(通常是基于预先定义的策略或价值函数)。
2.优缺点
  • 优点:该方法在计算上较为高效,因为它简化了问题,将复杂的概率分布问题转化为一个确定性问题。
  • 缺点:当系统不确定性较高时(即多种状态可能同时存在),这种方法可能会失败。因为它无法主动收集更多信息来提高置信度,只依赖于被动更新的置信状态。

这类方法适用于那些不确定性较小的场景,但在高度动态且不确定性较大的环境下,可能效果不佳。

2. EPSILON 系统解析

该部分只做general的介绍,详细的流程可以参考论文及以下链接:

  • https://github.com/HKUST-Aerial-Robotics/EPSILON

  • EPSILON: An Efficient Planning System for Automated Vehicles in Highly Interactive Environments

  • EPSILON论文解读、代码ROS2-Carla重构、实车部署全记录

2.1 自动驾驶决策规划现存问题

请添加图片描述
请添加图片描述

2.2 系统概述

请添加图片描述

2.3 问题描述

请添加图片描述请添加图片描述
请添加图片描述

2.4 整体流程

Efficient Behavior Planning – Motivating Example
请添加图片描述

Efficient Behavior Planning – Guided Action Branching
请添加图片描述
请添加图片描述
Efficient Behavior Planning – Multi-agent Forward Simulation
请添加图片描述
Efficient Behavior Planning – Safety Mechanism
请添加图片描述
Efficient Behavior Planning – Policy Selection
请添加图片描述

基于时空语义走廊的轨迹生成

请添加图片描述

3. MARC 解读—— Multipolicy and Risk-aware Contingency Planning for Autonomous Driving

该部分没有听太懂,还是要结合论文去看。可参考以下链接:

  • MARC: Multipolicy and Risk-Aware Contingency Planning for Autonomous
    Driving
  • MARC: Multipolicy and Risk-aware Contingency Planning for Autonomous
    Driving - 论文推土机的文章
  • MARC:一种安全又高效的时空联合规划的方法

请添加图片描述
请添加图片描述

请添加图片描述
请添加图片描述
请添加图片描述请添加图片描述
请添加图片描述请添加图片描述

请添加图片描述
请添加图片描述

4. 参考链接

  • 《自动驾驶预测与决策技术》

  • Part1_自动驾驶决策规划简介

  • Part2_基于模型的预测方法

  • Part3_路径与轨迹规划

  • Part4_时空联合规划

  • Part5_决策过程

  • https://github.com/HKUST-Aerial-Robotics/EPSILON

  • EPSILON: An Efficient Planning System for Automated Vehicles in Highly Interactive Environments

  • EPSILON论文解读、代码ROS2-Carla重构、实车部署全记录

  • MARC: Multipolicy and Risk-Aware Contingency Planning for Autonomous
    Driving

  • MARC: Multipolicy and Risk-aware Contingency Planning for Autonomous
    Driving - 论文推土机的文章

  • MARC:一种安全又高效的时空联合规划的方法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/5411.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

Spring Boot框架下的知识管理与多维分类

4 系统设计 系统分析接下来的操作步骤就是系统的设计,这部分内容也是不能马虎对待的。因为生活都是在不断产生变化,人们需求也是在不断改变,开发技术也是在不断升级,所以程序也需要考虑在今后可以方便进行功能扩展,完成…

LeetCode17. 电话号码的字母组合(2024秋季每日一题 59)

给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。答案可以按 任意顺序 返回。 给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。 示例 1: 输入:digits “23” 输出:[“…

Nature Methods | 基于流形约束的RNA速度推断精准解析细胞周期动态调节规律

生信碱移 VeloCycle算法 VeloCycle:基于流形约束的RNA速度推断在细胞周期动态中的精准解析 今天给各位老铁们分享一篇于2024年10月31号发表在 Nature Methods [IF: 36.1] 的文章:"Statistical inference with a manifold-constrained RNA velocity…

Spring挖掘:(AOP篇)

学习AOP时,我们首先来了解一下何为AOP 一. 概念 AOP(面向切面编程,Aspect Oriented Programming)是一种编程技术,旨在通过预编译方式或运行期动态代理实现程序功能的统一管理和增强。AOP的主要目标是在不改变原有业务逻辑代码的…

【机器学习】k最近邻分类

📝本文介绍 本文为作者阅读鸢尾花书籍以及一些其他资料的k最近邻分类后,所作笔记 👋作者简介:一个正在积极探索的本科生 📱联系方式:943641266(QQ) 🚪Github地址:https://github.com…

《深度学习》bert自然语言处理框架

目录 一,关于bert框架 1、什么是bert 2、模型结构 自注意力机制: 3、预训练任务 4、双向性 5、微调(Fine-tuning) 6、表现与影响 二、Transformer 1、传统RNN网络计算时存在的问题 1)串联 2)并行…

开源 - Ideal库 - 常用时间转换扩展方法(一)

从事软件开发这么多年,平时也积累了一些方便自己快速开发的帮助类,一直在想着以什么方式分享出来,因此有了这个系列文章,后面我将以《开源-Ideal库》系列文章分享一些我认为比较成熟、比较方便、比较好的代码,如果感觉…

网络安全漏洞管理十大度量指标

前言 当前,网络安全漏洞所带来的风险及产生的后果,影响到网络空间乃至现实世界的方方面面,通信、金融、能源、电力、铁路、医院、水务、航空、制造业等行业各类勒索、数据泄露、供应链、钓鱼等网络安全攻击事件层出不穷。因此,加…

R语言*号标识显著性差异判断组间差异是否具有统计意义

前言 该R代码用于对Iris数据集进行多组比较分析,探讨不同鸢尾花品种在不同测量变量(花萼和花瓣长度与宽度)上的显著性差异。通过将数据转换为长格式,并利用ANOVA和Tukey检验,代码生成了不同品种间的显著性标记&#x…

Web前端PC端开发者工具详细介绍(约10000字保姆级讲解)

1.Elements部分 首先按下F12键即可进入开发者工具页面,以CSDN博客页面为例,如下可以看到右侧是该页面所对应的前端代码。 在Elements部分的Styles模块下可以看页面的各个类别的样式等。 (1)点击.cls可以开启动态修改元素的class&a…

SQL Server 日志记录

SQL Server是一个关系数据库管理系统(RDBMS),旨在有效地存储、组织、检索和操作大量结构化数据。SQL Server日志是监控数据库活动、排查问题和确保数据一致性的基础,这些日志记录了SQL Server实例中发生的事件的时间顺序。它们充当…

Qt QCustomplot 在采集信号领域的应用

文章目录 一、常用的几种开源库:1、QCustomPlot:2、QChart:3、Qwt:QCustomplot 在采集信号领域的应用1、应用实例时域分析频谱分析2.数据筛选和处理其他参考自然界中的物理过程、传感器和传感器网络、电路和电子设备、通信系统等都是模拟信号的来源。通过可视化模拟信号,可以…

【数据结构】堆和二叉树(2)

文章目录 前言一、建堆和堆排序1.堆排序 二、二叉树链式结构的实现1.二叉树的遍历 三、链式二叉树的功能函数1.二叉树结点个数2.二叉树叶子结点个数3.二叉树的高度4.二叉树第k层结点个数5. 二叉树查找值为x的结点6.二叉树销毁 总结 前言 接着上一篇博客,我们继续分…

PDF多功能工具箱 PDF Shaper v14.6

如今对PDF处理的软件很多都是只是单一的功能。PDF Shaper给你完全不同的体验,因为PDF Shaper是一款免费的PDF工具集合的软件。有了PDF Shaper,你以后再也不用下载其他处理PDF的软件了。PDF Shaper的功能有:合并,分割,加…

猫用空气净化器哪个牌子好?求除毛好、噪音小的宠物空气净化器!

换毛季家里孩子不省心,疯狂掉落的猫毛和空气中乱飞的浮毛可把我折磨死了。每天下班都要抽出时间来清理,不然这个家就不能要了。猫毛靠我自己可以打扫,浮毛还得借助宠物空气净化器这种专业工具。所以我最近着手做功课,打算入手一台…

Halcon 矫正图像 图像矫正

目录 原图 矫正后的图像 ​编辑 示例代码 原图 矫正后的图像 示例代码 找ROI部分代码暂无法分享 HomMat2DInvert : []Row_T : []Col_T : []region_features (ROI, rectangularity, Value)if (Value > RectY)HomMat2DInvert : []smallest_rectangle1 (ROI, Row_T, Col…

Spring Boot 3.x 中使用 SpringDoc 2 / Swagger3(详解)

大家好,我是码哥,《Redis 高手心法》作者。 SpringBoot 已经成为 Java 开发的首选框架,今天码哥跟大家聊一聊 Spring Boot3 如何与 Swagger3 集成打造一个牛逼轰轰的接口文档。 为什么要用 Swagger 唐二婷:我最讨厌两件事&#xf…

Java中四种引用类型【快速理解】图文

一、强引用 我们正常手动new出来的对象都是强应用,不对他进行别的操作的时候它是不会进行垃圾回收的。除非将它的引用断开,此时调用垃圾回收器才会将它回收。 二、软引用 三、虚引用 虚引用的意思就是,引用关系是虚的,如果创造出…

C语言-详细讲解-洛谷P1075 [NOIP2012 普及组] 质因数分解

1.题目要求 2.题目解析 解题点在于如何分解质因数&#xff0c;这里介绍一下短除法。&#xff08;虽然解决这个问题可以不用短除法&#xff09; 3.代码实现 贴一下自己的代码 #include <stdio.h> #include <math.h>int main() {int n, i;scanf("%d",…

Kubernetes Extended Resource 扩展资源使用简介

Kubernetes 除了提供基于 CPU 和内存的传统计算资源调度外&#xff0c;还支持自定义的 Extended Resource 扩展资源&#xff0c;以便调度和管理其它各种类型的资源。 Extended Resource Extended Resource 扩展资源的创建和使用过程如下图所示&#xff1a; 定义资源&#xff…