【Java面试——计算机基础——网络——一篇就够了!!!】

1. 网络分层模型

1.1 OSI七层模型

OSI 七层模型 是国际标准化组织提出的一个网络分层模型,其大体结构以及每一层提供的功能如下图所示:
在这里插入图片描述每一层都专注做一件事情,并且每一层都需要使用下一层提供的功能比如传输层需要使用网络层提供的路由和寻址功能,这样传输层才知道把数据传输到哪里去。
OSI 的七层体系结构概念清楚,理论也很完整,但是它比较复杂而且不实用,而且有些功能在多个层中重复出现。

1.2 TCP/IP四层模型是什么?每一层的作用是什么?

TCP/IP 四层模型 是目前被广泛采用的一种模型,我们可以将 TCP / IP 模型看作是 OSI 七层模型的精简版本,由以下 4 层组成:

  1. 应用层
  2. 传输层
  3. 网络层
  4. 网络接口层
    在这里插入图片描述

1.3 网络分层的原因

复杂的系统需要分层,因为每一层都需要专注于一类事情。网络分层的原因也是一样,每一层只专注于做一类事情。

  1. 各层之间相互独立
  2. 提高了灵活性和可替换性
  3. 大问题化小

计算机科学领域的任何问题都可以通过增加一个间接的中间层来解决,计算机整个体系从上到下都是按照严格的层次结构设计的。

1.4 常见网络协议

1.4.1 应用层协议

在这里插入图片描述

  • HTTP(Hypertext Transfer Protocol,超文本传输协议):基于 TCP 协议,是一种用于传输超文本和多媒体内容的协议,主要是为 Web 浏览器与 Web 服务器之间的通信而设计的。当我们使用浏览器浏览网页的时候,我们网页就是通过 HTTP 请求进行加载的。
  • SMTP(Simple Mail Transfer Protocol,简单邮件发送协议):基于 TCP 协议,是一种用于发送电子邮件的协议。注意 ⚠️:SMTP 协议只负责邮件的发送,而不是接收。要从邮件服务器接收邮件,需要使用 POP3 或 IMAP 协议。
  • POP3/IMAP(邮件接收协议):基于 TCP 协议,两者都是负责邮件接收的协议。IMAP 协议是比 POP3 更新的协议,它在功能和性能上都更加强大。IMAP 支持邮件搜索、标记、分类、归档等高级功能,而且可以在多个设备之间同步邮件状态。几乎所有现代电子邮件客户端和服务器都支持 IMAP。
  • FTP(File Transfer Protocol,文件传输协议) : 基于 TCP 协议,是一种用于在计算机之间传输文件的协议,可以屏蔽操作系统和文件存储方式。注意 ⚠️:FTP 是一种不安全的协议,因为它在传输过程中不会对数据进行加密。建议在传输敏感数据时使用更安全的协议,如 SFTP。
  • Telnet(远程登陆协议):基于 TCP 协议,用于通过一个终端登陆到其他服务器。Telnet 协议的最大缺点之一是所有数据(包括用户名和密码)均以明文形式发送,这有潜在的安全风险。这就是为什么如今很少使用 Telnet,而是使用一种称为 SSH 的非常安全的网络传输协议的主要原因。
  • SSH(Secure Shell Protocol,安全的网络传输协议):基于 TCP 协议,通过加密和认证机制实现安全的访问和文件传输等业务
  • RTP(Real-time Transport Protocol,实时传输协议):通常基于 UDP 协议,但也支持 TCP 协议。它提供了端到端的实时传输数据的功能,但不包含资源预留存、不保证实时传输质量,这些功能由 WebRTC 实现。
  • DNS(Domain Name System,域名管理系统): 基于 UDP 协议,用于解决域名和 IP 地址的映射问题。

1.4.2 传输层常见协议

在这里插入图片描述

  • TCP(Transmission Control Protocol,传输控制协议 ):提供面向连接 的,可靠的数据传输服务。
  • UDP(User Datagram Protocol,用户数据协议):提供无连接的,尽最大努力的数据传输服务(不保证数据传输的可靠性),简单高效。

1.4.3 网络层常见协议

在这里插入图片描述

  • IP(Internet Protocol,网际协议):TCP/IP 协议中最重要的协议之一,属于网络层的协议,主要作用是定义数据包的格式、对数据包进行路由和寻址,以便它们可以跨网络传播并到达正确的目的地。目前 IP 协议主要分为两种,一种是过去的 IPv4,另一种是较新的 IPv6,目前这两种协议都在使用,但后者已经被提议来取代前者。
  • ARP(Address Resolution Protocol,地址解析协议):ARP 协议解决的是网络层地址和链路层地址之间的转换问题。因为一个 IP 数据报在物理上传输的过程中,总是需要知道下一跳(物理上的下一个目的地)该去往何处,但 IP 地址属于逻辑地址,而 MAC 地址才是物理地址,ARP 协议解决了 IP 地址转 MAC 地址的一些问题。
  • ICMP(Internet Control Message Protocol,互联网控制报文协议):一种用于传输网络状态和错误消息的协议,常用于网络诊断和故障排除。例如,Ping 工具就使用了 ICMP 协议来测试网络连通性。
  • NAT(Network Address Translation,网络地址转换协议):NAT 协议的应用场景如同它的名称——网络地址转换,应用于内部网到外部网的地址转换过程中。具体地说,在一个小的子网(局域网,LAN)内,各主机使用的是同一个 LAN 下的 IP 地址,但在该 LAN 以外,在广域网(WAN)中,需要一个统一的 IP 地址来标识该 LAN 在整个 Internet 上的位置。
  • OSPF(Open Shortest Path First,开放式最短路径优先):一种内部网关协议(Interior Gateway Protocol,IGP),也是广泛使用的一种动态路由协议,基于链路状态算法,考虑了链路的带宽、延迟等因素来选择最佳路径
  • RIP(Routing Information Protocol,路由信息协议):一种内部网关协议(Interior Gateway Protocol,IGP),也是一种动态路由协议,基于距离向量算法,使用固定的跳数作为度量标准,选择跳数最少的路径作为最佳路径。
  • BGP(Border Gateway Protocol,边界网关协议):一种用来在路由选择域之间交换网络层可达性信息(Network Layer Reachability Information,NLRI)的路由选择协议,具有高度的灵活性和可扩展性。

2.HTTP

2.1从输入URL到页面展示流程(重要)

在这里插入图片描述

  1. 在浏览器中输入指定网页的 URL。
  2. 浏览器通过 DNS 协议,获取域名对应的 IP 地址。
  3. 浏览器根据 IP 地址和端口号,向目标服务器发起一个 TCP 连接请求。
  4. 浏览器在 TCP 连接上,向服务器发送一个 HTTP 请求报文,请求获取网页的内容。
  5. 服务器收到 HTTP 请求报文后,处理请求,并返回 HTTP 响应报文给浏览器。
  6. 浏览器收到 HTTP 响应报文后,解析响应体中的 HTML 代码,渲染网页的结构和样式,同时根据 HTML 中的其他资源的 URL(如图片、CSS、JS 等),再次发起 HTTP 请求,获取这些资源的内容,直到网页完全加载显示。
  7. 浏览器在不需要和服务器通信时,可以主动关闭 TCP 连接,或者等待服务器的关闭请求。

2.2 HTTP状态码

HTTP 状态码用于描述 HTTP 请求的结果,比如 2xx 就代表请求被成功处理。
在这里插入图片描述

2.3 HTTP和HTTPS的区别(重要)

在这里插入图片描述

  • 端口号:HTTP 默认是 80,HTTPS 默认是 443。
  • URL 前缀:HTTP 的 URL 前缀是 http://,HTTPS 的 URL 前缀是 https://。
  • 安全性和资源消耗:HTTP 协议运行在 TCP 之上,所有传输的内容都是明文,客户端和服务器端都无法验证对方的身份。HTTPS 是运行在 SSL/TLS 之上的 HTTP 协议,SSL/TLS 运行在 TCP 之上。所有传输的内容都经过加密,加密采用对称加密,但对称加密的密钥用服务器方的证书进行了非对称加密。所以说,HTTP 安全性没有 HTTPS 高,但是 HTTPS 比 HTTP 耗费更多服务器资源。
  • SEO(搜索引擎优化):搜索引擎通常会更青睐使用 HTTPS 协议的网站,因为 HTTPS 能够提供更高的安全性和用户隐私保护。使用 HTTPS 协议的网站在搜索结果中可能会被优先显示,从而对 SEO 产生影响。

2.4 HTTP/1.0 和 HTTP/1.1区别

在这里插入图片描述

  • 连接方式 : HTTP/1.0 为短连接,HTTP/1.1 支持长连接。HTTP 协议的长连接和短连接,实质上是 TCP 协议的长连接和短连接。
  • 状态响应码 : HTTP/1.1 中新加入了大量的状态码,光是错误响应状态码就新增了 24 种。比如说,100 (Continue)——在请求大资源前的预热请求,206 (Partial Content)——范围请求的标识码,409 (Conflict)——请求与当前资源的规定冲突,410 (Gone)——资源已被永久转移,而且没有任何已知的转发地址。
  • 缓存机制 : 在 HTTP/1.0 中主要使用 Header 里的 If-Modified-Since,Expires 来做为缓存判断的标准,HTTP/1.1 则引入了更多的缓存控制策略例如 Entity tag,If-Unmodified-Since, If-Match, If-None-Match 等更多可供选择的缓存头来控制缓存策略。
  • 带宽:HTTP/1.0 中,存在一些浪费带宽的现象,例如客户端只是需要某个对象的一部分,而服务器却将整个对象送过来了,并且不支持断点续传功能,HTTP/1.1 则在请求头引入了 range 头域,它允许只请求资源的某个部分,即返回码是 206(Partial Content),这样就方便了开发者自由的选择以便于充分利用带宽和连接。
  • Host 头(Host Header)处理 :HTTP/1.1 引入了 Host 头字段,允许在同一 IP 地址上托管多个域名,从而支持虚拟主机的功能。而 HTTP/1.0 没有 Host 头字段,无法实现虚拟主机。

2.5 HTTP/1.1 和 HTTP/2.0 区别

在这里插入图片描述

  • 多路复用(Multiplexing):HTTP/2.0 在同一连接上可以同时传输多个请求和响应(可以看作是 HTTP/1.1 中长链接的升级版本),互不干扰。HTTP/1.1 则使用串行方式,每个请求和响应都需要独立的连接,而浏览器为了控制资源会有 6-8 个 TCP 连接的限制。。这使得 HTTP/2.0 在处理多个请求时更加高效,减少了网络延迟和提高了性能。
  • 二进制帧(Binary Frames):HTTP/2.0 使用二进制帧进行数据传输,而 HTTP/1.1 则使用文本格式的报文。二进制帧更加紧凑和高效,减少了传输的数据量和带宽消耗。
  • 头部压缩(Header Compression):HTTP/1.1 支持Body压缩,Header不支持压缩。HTTP/2.0 支持对Header压缩,使用了专门为Header压缩而设计的 HPACK 算法,减少了网络开销。
  • 服务器推送(Server Push):HTTP/2.0 支持服务器推送,可以在客户端请求一个资源时,将其他相关资源一并推送给客户端,从而减少了客户端的请求次数和延迟。而 HTTP/1.1 需要客户端自己发送请求来获取相关资源。

在这里插入图片描述
可以看到,HTTP/2.0 的多路复用使得不同的请求可以共用一个 TCP 连接,避免建立多个连接带来不必要的额外开销,而 HTTP/1.1 中的每个请求都会建立一个单独的连接

2.6 HTTP/2.0 和 HTTP/3.0 区别

在这里插入图片描述

  1. 传输协议:HTTP/2.0 是基于 TCP 协议实现的,HTTP/3.0 新增了 QUIC(Quick UDP Internet Connections) 协议来实现可靠的传输,提供与 TLS/SSL 相当的安全性,具有较低的连接和传输延迟。你可以将 QUIC 看作是 UDP 的升级版本,在其基础上新增了很多功能比如加密、重传等等。HTTP/3.0 之前名为 HTTP-over-QUIC,从这个名字中我们也可以发现,HTTP/3 最大的改造就是使用了 QUIC。
  2. 连接建立:HTTP/2.0 需要经过经典的 TCP 三次握手过程(由于安全的 HTTPS 连接建立还需要 TLS 握手,共需要大约 3 个 RTT)。由于 QUIC 协议的特性(TLS 1.3,TLS 1.3 除了支持 1 个 RTT 的握手,还支持 0 个 RTT 的握手)连接建立仅需 0-RTT 或者 1-RTT。这意味着 QUIC 在最佳情况下不需要任何的额外往返时间就可以建立新连接。
  3. 头部压缩:HTTP/2.0 使用 HPACK 算法进行头部压缩,而 HTTP/3.0 使用更高效的 QPACK 头压缩算法。
  4. 队头阻塞:HTTP/2.0 多请求复用一个 TCP 连接,一旦发生丢包,就会阻塞住所有的 HTTP 请求。由于 QUIC 协议的特性,HTTP/3.0 在一定程度上解决了队头阻塞(Head-of-Line blocking, 简写:HOL blocking)问题,一个连接建立多个不同的数据流,这些数据流之间独立互不影响,某个数据流发生丢包了,其数据流不受影响(本质上是多路复用+轮询)。
  5. 连接迁移:HTTP/3.0 支持连接迁移,因为 QUIC 使用 64 位 ID 标识连接,只要 ID 不变就不会中断,网络环境改变时(如从 Wi-Fi 切换到移动数据)也能保持连接。而 TCP 连接是由(源 IP,源端口,目的 IP,目的端口)组成,这个四元组中一旦有一项值发生改变,这个连接也就不能用了。
  6. 错误恢复:HTTP/3.0 具有更好的错误恢复机制,当出现丢包、延迟等网络问题时,可以更快地进行恢复和重传。而 HTTP/2.0 则需要依赖于 TCP 的错误恢复机制。
  7. 安全性:在 HTTP/2.0 中,TLS 用于加密和认证整个 HTTP 会话,包括所有的 HTTP 头部和数据负载。TLS 的工作是在 TCP 层之上,它加密的是在 TCP 连接中传输的应用层的数据,并不会对 TCP 头部以及 TLS 记录层头部进行加密,所以在传输的过程中 TCP 头部可能会被攻击者篡改来干扰通信。而 HTTP/3.0 的 QUIC 对整个数据包(包括报文头和报文体)进行了加密与认证处理,保障安全性。

2.7 HTTP/1.0、HTTP/2.0 和 HTTP/3.0 的协议栈

在这里插入图片描述

  • HTTP/1.0
    • TLS/SSL是可选的(HTTPS),并通过TCP传输
  • HTTP/2.0:
    • 通常使用TLS1.2及以上版本,并通过TCP传输
    • 使用 HPACK 进行头部压缩
  • HTTP/3.0:
    • 基于QUIC协议,QUIC内置TLS1.3,并通过UDP传输
    • 使用更高效的 QPACK 进行头部压缩

2.8 HTTP如何保存用户状态

HTTP 是一种不保存状态,即无状态(stateless)协议。也就是说 HTTP 协议自身不对请求和响应之间的通信状态进行保存。那么我们如何保存用户状态呢?Session 机制的存在就是为了解决这个问题,Session 的主要作用就是通过服务端记录用户的状态。

典型的场景是购物车,当你要添加商品到购物车的时候,系统不知道是哪个用户操作的,因为 HTTP 协议是无状态的。服务端给特定的用户创建特定的 Session 之后就可以标识这个用户并且跟踪这个用户了(一般情况下,服务器会在一定时间内保存这个 Session,过了时间限制,就会销毁这个 Session)。

在服务端保存 Session 的方法很多,最常用的就是内存和数据库(比如是使用内存数据库 redis 保存)。既然 Session 存放在服务器端,那么我们如何实现 Session 跟踪呢?大部分情况下,我们都是通过在 Cookie 中附加一个 Session ID 来方式来跟踪。

Cookie 被禁用怎么办?

最常用的就是利用 URL 重写把 Session ID 直接附加在 URL 路径的后面。

2.9 URI和URL的区别

  • URI(Uniform Resource Identifier) 是统一资源标志符,可以唯一标识一个资源。
  • URL(Uniform Resource Locator) 是统一资源定位符,可以提供该资源的路径。它是一种具体的 URI,即 URL 可以用来标识一个资源,而且还指明了如何 locate 这个资源。

URI 的作用像身份证号一样,URL 的作用更像家庭住址一样。URL 是一种具体的 URI,它不仅唯一标识资源,而且还提供了定位该资源的信息。

2.10 GET和POST的区别

GET 和 POST 是 HTTP 协议中两种常用的请求方法,它们在不同的场景和目的下有不同的特点和用法。

  • 语义(主要区别):GET 通常用于获取或查询资源,而 POST 通常用于创建或修改资源。
  • 幂等:GET 请求是幂等的,即多次重复执行不会改变资源的状态,而 POST 请求是不幂等的,即每次执行可能会产生不同的结果或影响资源的状态。
  • 格式:GET 请求的参数通常放在 URL 中,形成查询字符串(querystring),而 POST 请求的参数通常放在请求体(body)中,可以有多种编码格式,如 application/x-www-form-urlencoded、multipart/form-data、application/json 等。GET 请求的 URL 长度受到浏览器和服务器的限制,而 POST 请求的 body 大小则没有明确的限制。不过,实际上 GET 请求也可以用 body 传输数据,只是并不推荐这样做,因为这样可能会导致一些兼容性或者语义上的问题。
  • 缓存:由于 GET 请求是幂等的,它可以被浏览器或其他中间节点(如代理、网关)缓存起来,以提高性能和效率。而 POST 请求则不适合被缓存,因为它可能有副作用,每次执行可能需要实时的响应。
  • 安全性:GET 请求和 POST 请求如果使用 HTTP 协议的话,那都不安全,因为 HTTP 协议本身是明文传输的,必须使用 HTTPS 协议来加密传输数据。另外,GET 请求相比 POST 请求更容易泄露敏感数据,因为 GET 请求的参数通常放在 URL 中。

3. WebSocket

3.1 什么是WebSocket

WebSocket 是一种基于 TCP 连接的全双工通信协议,即客户端和服务器可以同时发送和接收数据。

WebSocket 协议在 2008 年诞生,2011 年成为国际标准,几乎所有主流较新版本的浏览器都支持该协议。不过,WebSocket 不只能在基于浏览器的应用程序中使用,很多编程语言、框架和服务器都提供了 WebSocket 支持。

WebSocket 协议本质上是应用层的协议,用于弥补 HTTP 协议在持久通信能力上的不足。客户端和服务器仅需一次握手,两者之间就直接可以创建持久性的连接,并进行双向数据传输。
在这里插入图片描述

常见的应用场景

  • 视频弹幕
  • 实时消息推送
  • 实时游戏对战
  • 多用户协同编辑
  • 社交聊天

3.2 WebSocket和HTTP的区别

WebSocket 和 HTTP 两者都是基于 TCP 的应用层协议,都可以在网络中传输数据。

下面是二者的主要区别:

  • WebSocket 是一种双向实时通信协议,而 HTTP 是一种单向通信协议。并且,HTTP 协议下的通信只能由客户端发起,服务器无法主动通知客户端。
  • WebSocket 使用 ws:// 或 wss://(使用 SSL/TLS 加密后的协议,类似于 HTTP 和 HTTPS 的关系) 作为协议前缀,HTTP 使用 http:// 或 https:// 作为协议前缀。
  • WebSocket 可以支持扩展,用户可以扩展协议,实现部分自定义的子协议,如支持压缩、加密等。
  • WebSocket 通信数据格式比较轻量,用于协议控制的数据包头部相对较小,网络开销小,而 HTTP 通信每次都要携带完整的头部,网络开销较大(HTTP/2.0 使用二进制帧进行数据传输,还支持头部压缩,减少了网络开销)。

3.3 WebSocket的工作流程

WebSocket 的工作过程可以分为以下几个步骤:

  1. 客户端向服务器发送一个 HTTP 请求,请求头中包含 Upgrade: websocket 和 Sec-WebSocket-Key 等字段,表示要求升级协议为 WebSocket;
  2. 服务器收到这个请求后,会进行升级协议的操作,如果支持 WebSocket,它将回复一个 HTTP 101 状态码,响应头中包含 ,Connection: Upgrade和 Sec-WebSocket-Accept: xxx 等字段、表示成功升级到 WebSocket 协议。
  3. 客户端和服务器之间建立了一个 WebSocket 连接,可以进行双向的数据传输。数据以帧(frames)的形式进行传送,WebSocket 的每条消息可能会被切分成多个数据帧(最小单位)。发送端会将消息切割成多个帧发送给接收端,接收端接收消息帧,并将关联的帧重新组装成完整的消息。
  4. 客户端或服务器可以主动发送一个关闭帧,表示要断开连接。另一方收到后,也会回复一个关闭帧,然后双方关闭 TCP 连接。

3.4 SSE和WebSocket的区别

SSE 与 WebSocket 作用相似,都可以建立服务端与浏览器之间的通信,实现服务端向客户端推送消息,但还是有些许不同:

  • SSE 是基于 HTTP 协议的,它们不需要特殊的协议或服务器实现即可工作;WebSocket 需单独服务器来处理协议。
  • SSE 单向通信,只能由服务端向客户端单向通信;WebSocket 全双工通信,即通信的双方可以同时发送和接受信息。
  • SSE 实现简单开发成本低,无需引入其他组件;WebSocket 传输数据需做二次解析,开发门槛高一些。
  • SSE 默认支持断线重连;WebSocket 则需要自己实现。
  • SSE 只能传送文本消息,二进制数据需要经过编码后传送;WebSocket 默认支持传送二进制数据。

选择SSE的原因:在某些情况下,不需要从客户端发送数据。而你只需要一些服务器操作的更新。比如:站内信、未读消息数、状态更新、股票行情、监控数量等场景,SSE 不管是从实现的难易和成本上都更加有优势。此外,SSE 具有 WebSocket 在设计上缺乏的多种功能,例如:自动重新连接、事件 ID 和发送任意事件的能力。

4. PING

4.1 PING命令的作用

PING 命令是一种常用的网络诊断工具,经常用来测试网络中主机之间的连通性和网络延迟。

# 发送4个PING请求数据包到 www.baidu.comping -c 4 www.baidu.comPING www.a.shifen.com (14.119.104.189): 56 data bytes
64 bytes from 14.119.104.189: icmp_seq=0 ttl=54 time=27.867 ms
64 bytes from 14.119.104.189: icmp_seq=1 ttl=54 time=28.732 ms
64 bytes from 14.119.104.189: icmp_seq=2 ttl=54 time=27.571 ms
64 bytes from 14.119.104.189: icmp_seq=3 ttl=54 time=27.581 ms--- www.a.shifen.com ping statistics ---
4 packets transmitted, 4 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 27.571/27.938/28.732/0.474 ms

PING 命令的输出结果通常包括以下几部分信息:

  1. ICMP Echo Request(请求报文)信息:序列号、TTL(Time to Live)值。
  2. 目标主机的域名或 IP 地址:输出结果的第一行。
  3. 往返时间(RTT,Round-Trip Time):从发送 ICMP Echo Request(请求报文)到接收到 ICMP Echo Reply(响应报文)的总时间,用来衡量网络连接的延迟。
  4. 统计结果(Statistics):包括发送的 ICMP 请求数据包数量、接收到的 ICMP 响应数据包数量、丢包率、往返时间(RTT)的最小、平均、最大和标准偏差值。

4.2 PING命令的工作原理

PING 基于网络层的 ICMP(Internet Control Message Protocol,互联网控制报文协议),其主要原理就是通过在网络上发送和接收 ICMP 报文实现的。

ICMP 报文中包含了类型字段,用于标识 ICMP 报文类型。ICMP 报文的类型有很多种,但大致可以分为两类:

  • 查询报文类型:向目标主机发送请求并期望得到响应。
  • 差错报文类型:向源主机发送错误信息,用于报告网络中的错误情况。

5. DNS

5.1 DNS的作用

DNS(Domain Name System)域名管理系统,是当用户使用浏览器访问网址之后,使用的第一个重要协议。DNS 要解决的是域名和 IP 地址的映射问题。

在一台电脑上,可能存在浏览器 DNS 缓存,操作系统 DNS 缓存,路由器 DNS 缓存。如果以上缓存都查询不到,那么 DNS 就闪亮登场了。

目前 DNS 的设计采用的是分布式、层次数据库结构,DNS 是应用层协议,它可以在 UDP 或 TCP 协议之上运行,端口为 53 。

5.2 DNS服务器类型和数量

DNS 服务器自底向上可以依次分为以下几个层级(所有 DNS 服务器都属于以下四个类别之一):
在这里插入图片描述

  • 根 DNS 服务器。根 DNS 服务器提供 TLD 服务器的 IP 地址。目前世界上只有 13 组根服务器,我国境内目前仍没有根服务器。
  • 顶级域 DNS 服务器(TLD 服务器)。顶级域是指域名的后缀,如com、org、net和edu等。国家也有自己的顶级域,如uk、fr和ca。TLD 服务器提供了权威 DNS 服务器的 IP 地址。
  • 权威 DNS 服务器。在因特网上具有公共可访问主机的每个组织机构必须提供公共可访问的 DNS 记录,这些记录将这些主机的名字映射为 IP 地址。
  • 本地 DNS 服务器。每个 ISP(互联网服务提供商)都有一个自己的本地 DNS 服务器。当主机发出 DNS 请求时,该请求被发往本地 DNS 服务器,它起着代理的作用,并将该请求转发到 DNS 层次结构中。严格说来,不属于 DNS 层级结构

5.3 DNS劫持

DNS 劫持是一种网络攻击,它通过修改 DNS 服务器的解析结果,使用户访问的域名指向错误的 IP 地址,从而导致用户无法访问正常的网站,或者被引导到恶意的网站。DNS 劫持有时也被称为 DNS 重定向、DNS 欺骗或 DNS 污染。

  • 利用DNS服务器进行DDOS攻击
    • 原理:攻击者利用DNS服务器的递归查询功能,通过控制大量“肉鸡”(被感染的计算机)向DNS服务器发送大量查询请求,并将被攻击者的IP地址作为源地址。DNS服务器在处理这些查询请求时,会将响应数据包发送给被攻击者,导致被攻击者的网络被大量无用的数据包淹没,从而造成DDOS攻击。
  • DNS缓存感染
    • 原理:攻击者向存在漏洞的DNS服务器发送恶意DNS请求,将伪造的DNS记录(如恶意网站的IP地址)注入到DNS服务器的缓存中。当用户访问被感染的域名时,DNS服务器会返回缓存中的恶意IP地址,导致用户被重定向到恶意网站。
  • DNS信息劫持
    • 原理:攻击者通过监听客户端和DNS服务器之间的通信,猜测DNS查询的ID号。攻击者伪造DNS响应数据包,将虚假的IP地址返回给客户端,导致客户端访问恶意网站。
  • DNS重定向
    • 原理:攻击者将DNS名称查询重定向到恶意DNS服务器上,从而完全控制被劫持域名的解析过程。攻击者可以通过恶意DNS服务器返回虚假的IP地址,导致用户访问恶意网站。

6.TCP和UDP

6.1 TCP和UDP的区别(重要)

  1. 是否面向连接:UDP 在传送数据之前不需要先建立连接。而 TCP 提供面向连接的服务,在传送数据之前必须先建立连接,数据传送结束后要释放连接。

  2. 是否是可靠传输:远地主机在收到 UDP 报文后,不需要给出任何确认,并且不保证数据不丢失,不保证是否顺序到达。TCP 提供可靠的传输服务,TCP 在传递数据之前,会有三次握手来建立连接,而且在数据传递时,有确认、窗口、重传、拥塞控制机制。通过 TCP 连接传输的数据,无差错、不丢失、不重复、并且按序到达。

  3. 是否有状态:这个和上面的“是否可靠传输”相对应。TCP 传输是有状态的,这个有状态说的是 TCP 会去记录自己发送消息的状态比如消息是否发送了、是否被接收了等等。为此 ,TCP 需要维持复杂的连接状态表。而 UDP 是无状态服务,简单来说就是不管发出去之后的事情了(这很渣男!)。

  4. 传输效率:由于使用 TCP 进行传输的时候多了连接、确认、重传等机制,所以 TCP 的传输效率要比 UDP 低很多。

  5. 传输形式:TCP 是面向字节流的,UDP 是面向报文的。

  6. 首部开销:TCP 首部开销(20 ~ 60 字节)比 UDP 首部开销(8 字节)要大。

  7. 是否提供广播或多播服务:TCP 只支持点对点通信,UDP 支持一对一、一对多、多对一、多对多;

    TCP UDP
    是否面向连接 是 否
    是否可靠 是 否
    是否有状态 是 否
    传输效率 较慢 较快
    传输形式 字节流 数据报文段
    首部开销 20 ~ 60 bytes 8 bytes
    是否提供广播或多播服务 否 是

TCPUDP
是否面向连接
是否可靠
是否有状态
传输效率较慢较快
传输形式字节流数据报文段
首部开销20~60byte8byte
是否提供广播或多播服务

6.2 TCP和UDP使用的场景

  • UDP 一般用于即时通信,比如:语音、 视频、直播等等。这些场景对传输数据的准确性要求不是特别高,比如你看视频即使少个一两帧,实际给人的感觉区别也不大。
  • TCP 用于对传输准确性要求特别高的场景,比如文件传输、发送和接收邮件、远程登录等等。

6.3 HTTP基于TCP还是UDP

HTTP/3.0 之前是基于 TCP 协议的,而 HTTP/3.0 将弃用 TCP,改用 基于 UDP 的 QUIC 协议 。
此变化解决了 HTTP/2 中存在的队头阻塞问题。队头阻塞是指在 HTTP/2.0 中,多个 HTTP 请求和响应共享一个 TCP 连接,如果其中一个请求或响应因为网络拥塞或丢包而被阻塞,那么后续的请求或响应也无法发送,导致整个连接的效率降低。这是由于 HTTP/2.0 在单个 TCP 连接上使用了多路复用,受到 TCP 拥塞控制的影响,少量的丢包就可能导致整个 TCP 连接上的所有流被阻塞。HTTP/3.0 在一定程度上解决了队头阻塞问题,一个连接建立多个不同的数据流,这些数据流之间独立互不影响,某个数据流发生丢包了,其数据流不受影响(本质上是多路复用+轮询)。

除了解决队头阻塞问题,HTTP/3.0 还可以减少握手过程的延迟。在 HTTP/2.0 中,如果要建立一个安全的 HTTPS 连接,需要经过 TCP 三次握手和 TLS 握手:

TCP 三次握手:客户端和服务器交换 SYN 和 ACK 包,建立一个 TCP 连接。这个过程需要 1.5 个 RTT(round-trip time),即一个数据包从发送到接收的时间。
TLS 握手:客户端和服务器交换密钥和证书,建立一个 TLS 加密层。这个过程需要至少 1 个 RTT(TLS 1.3)或者 2 个 RTT(TLS 1.2)。

所以,HTTP/2.0 的连接建立就至少需要 2.5 个 RTT(TLS 1.3)或者 3.5 个 RTT(TLS 1.2)。而在 HTTP/3.0 中,使用的 QUIC 协议(TLS 1.3,TLS 1.3 除了支持 1 个 RTT 的握手,还支持 0 个 RTT 的握手)连接建立仅需 0-RTT 或者 1-RTT。这意味着 QUIC 在最佳情况下不需要任何的额外往返时间就可以建立新连接。

6.4 使用TCP的协议

运行于 TCP 协议之上的协议

  1. HTTP 协议(HTTP/3.0 之前):超文本传输协议(HTTP,HyperText Transfer Protocol)是一种用于传输超文本和多媒体内容的协议,主要是为 Web 浏览器与 Web 服务器之间的通信而设计的。当我们使用浏览器浏览网页的时候,我们网页就是通过 HTTP 请求进行加载的。
  2. HTTPS 协议:更安全的超文本传输协议(HTTPS,Hypertext Transfer Protocol Secure),身披 SSL 外衣的 HTTP 协议
  3. FTP 协议:文件传输协议 FTP(File Transfer Protocol)是一种用于在计算机之间传输文件的协议,可以屏蔽操作系统和文件存储方式。注意 ⚠️:FTP 是一种不安全的协议,因为它在传输过程中不会对数据进行加密。建议在传输敏感数据时使用更安全的协议,如 SFTP。
  4. SMTP 协议:简单邮件传输协议(SMTP,Simple Mail Transfer Protocol)的缩写,是一种用于发送电子邮件的协议。注意 ⚠️:SMTP 协议只负责邮件的发送,而不是接收。要从邮件服务器接收邮件,需要使用 POP3 或 IMAP 协议。
  5. POP3/IMAP 协议:两者都是负责邮件接收的协议。IMAP 协议是比 POP3 更新的协议,它在功能和性能上都更加强大。IMAP 支持邮件搜索、标记、分类、归档等高级功能,而且可以在多个设备之间同步邮件状态。几乎所有现代电子邮件客户端和服务器都支持 IMAP。
  6. Telnet 协议:用于通过一个终端登陆到其他服务器。Telnet 协议的最大缺点之一是所有数据(包括用户名和密码)均以明文形式发送,这有潜在的安全风险。这就是为什么如今很少使用 Telnet,而是使用一种称为 SSH 的非常安全的网络传输协议的主要原因。
  7. SSH 协议 : SSH( Secure Shell)是目前较可靠,专为远程登录会话和其他网络服务提供安全性的协议。利用 SSH 协议可以有效防止远程管理过程中的信息泄露问题。SSH 建立在可靠的传输协议 TCP 之上。

6.5 使用UDP的协议

运行于 UDP 协议之上的协议

  1. HTTP 协议(HTTP/3.0 ): HTTP/3.0 弃用 TCP,改用基于 UDP 的 QUIC 协议 。
  2. DHCP 协议:动态主机配置协议,动态配置 IP 地址
  3. DNS:域名系统(DNS,Domain Name System)将人类可读的域名 (例如,www.baidu.com) 转换为机器可读的 IP 地址 (例如,220.181.38.148)。 我们可以将其理解为专为互联网设计的电话薄。实际上,DNS 同时支持 UDP 和 TCP 协议。

6.6 TCP的三次握手和四次挥手(重要)

6.6.1 建立连接-TCP三次握手

在这里插入图片描述
建立一个 TCP 连接需要“三次握手”,缺一不可:

一次握手:客户端发送带有 SYN(SEQ=x) 标志的数据包 -> 服务端,然后客户端进入 SYN_SEND 状态,等待服务端的确认;
二次握手:服务端发送带有 SYN+ACK(SEQ=y,ACK=x+1) 标志的数据包 –> 客户端,然后服务端进入 SYN_RECV 状态;
三次握手:客户端发送带有 ACK(ACK=y+1) 标志的数据包 –> 服务端,然后客户端和服务端都进入ESTABLISHED 状态,完成 TCP 三次握手。
当建立了 3 次握手之后,客户端和服务端就可以传输数据啦!

6.6.1.1 什么是半连接队列和全连接队列

在 TCP 三次握手过程中,Linux 内核会维护两个队列来管理连接请求:

  • 半连接队列(也称 SYN Queue):当服务端收到客户端的 SYN 请求时,此时双方还没有完全建立连接,它会把半连接状态的连接放在半连接队列。
  • 全连接队列(也称 Accept Queue):当服务端收到客户端对 ACK 响应时,意味着三次握手成功完成,服务端会将该连接从半连接队列移动到全连接队列。如果未收到客户端的 ACK 响应,会进行重传,重传的等待时间通常是指数增长的。如果重传次数超过系统规定的最大重传次数,系统将从半连接队列中删除该连接信息。
6.6.1.2 为什么要三次握手(不是两次,或者更多次)?

三次握手的目的是建立可靠的通信信道,说到通讯,简单来说就是数据的发送与接收,而三次握手最主要的目的就是双方确认自己与对方的发送与接收是正常的。

  1. 第一次握手:Client 什么都不能确认;Server 确认了对方发送正常,自己接收正常
  2. 第二次握手:Client 确认了:自己发送、接收正常,对方发送、接收正常;Server 确认了:对方发送正常,自己接收正常
  3. 第三次握手:Client 确认了:自己发送、接收正常,对方发送、接收正常;Server 确认了:自己发送、接收正常,对方发送、接收正常

三次握手就能确认双方收发功能都正常,缺一不可。

6.6.1.3 ACK和SYN的作用

服务端传回发送端所发送的 ACK 是为了告诉客户端:“我接收到的信息确实就是你所发送的信号了”,这表明从客户端到服务端的通信是正常的。回传 SYN 则是为了建立并确认从服务端到客户端的通信。

SYN 同步序列编号(Synchronize Sequence Numbers) 是 TCP/IP 建立连接时使用的握手信号。在客户机和服务端之间建立正常的 TCP 网络连接时,客户机首先发出一个 SYN 消息,服务端使用 SYN-ACK 应答表示接收到了这个消息,最后客户机再以 ACK(Acknowledgement)消息响应。这样在客户机和服务端之间才能建立起可靠的 TCP 连接,数据才可以在客户机和服务端之间传递。

6.6.1.4 三次握手过程中可以携带数据吗?

在 TCP 三次握手过程中,第三次握手是可以携带数据的(客户端发送完 ACK 确认包之后就进入 ESTABLISHED 状态了),这一点在 RFC 793 文档中有提到。也就是说,一旦完成了前两次握手,TCP 协议允许数据在第三次握手时开始传输。

如果第三次握手的 ACK 确认包丢失,但是客户端已经开始发送携带数据的包,那么服务端在收到这个携带数据的包时,如果该包中包含了 ACK 标记,服务端会将其视为有效的第三次握手确认。这样,连接就被认为是建立的,服务端会处理该数据包,并继续正常的数据传输流程。

6.6.2 四次挥手

在这里插入图片描述

断开一个 TCP 连接则需要“四次挥手”,缺一不可:

  1. 第一次挥手:客户端发送一个 FIN(SEQ=x) 标志的数据包->服务端,用来关闭客户端到服务端的数据传送。然后客户端进入 FIN-WAIT-1 状态。
  2. 第二次挥手:服务端收到这个 FIN(SEQ=X) 标志的数据包,它发送一个 ACK (ACK=x+1)标志的数据包->客户端 。然后服务端进入 CLOSE-WAIT 状态,客户端进入 FIN-WAIT-2 状态。
  3. 第三次挥手:服务端发送一个 FIN (SEQ=y)标志的数据包->客户端,请求关闭连接,然后服务端进入 LAST-ACK 状态。
  4. 第四次挥手:客户端发送 ACK (ACK=y+1)标志的数据包->服务端,然后客户端进入TIME-WAIT状态,服务端在收到 ACK (ACK=y+1)标志的数据包后进入 CLOSE 状态。此时如果客户端等待 2MSL 后依然没有收到回复,就证明服务端已正常关闭,随后客户端也可以关闭连接了。

注意:只要四次挥手没有结束,客户端和服务端就可以继续传输数据!

6.6.2.1 为什么要四次挥手?

TCP 是全双工通信,可以双向传输数据。任何一方都可以在数据传送结束后发出连接释放的通知,待对方确认后进入半关闭状态。当另一方也没有数据再发送的时候,则发出连接释放通知,对方确认后就完全关闭了 TCP 连接。

举个例子:A 和 B 打电话,通话即将结束后。

第一次挥手:A 说“我没啥要说的了”
第二次挥手:B 回答“我知道了”,但是 B 可能还会有要说的话,A 不能要求 B 跟着自己的节奏结束通话
第三次挥手:于是 B 可能又巴拉巴拉说了一通,最后 B 说“我说完了”
第四次挥手:A 回答“知道了”,这样通话才算结束。

6.6.2.2 为什么不能把服务端发送的 ACK 和 FIN 合并起来,变成三次挥手?

因为服务端收到客户端断开连接的请求时,可能还有一些数据没有发完,这时先回复 ACK,表示接收到了断开连接的请求。等到数据发完之后再发 FIN,断开服务端到客户端的数据传送。(因为服务端也不知道自己还要发送多少内容)

6.6.2.3 如果第二次挥手时服务端的 ACK 没有送达客户端,会怎样?

客户端没有收到 ACK 确认,会重新发送 FIN 请求。

6.6.2.4 为什么第四次挥手客户端需要等待 2*MSL(报文段最长寿命)时间后才进入 CLOSED 状态?

第四次挥手时,客户端发送给服务端的 ACK 有可能丢失,如果服务端因为某些原因而没有收到 ACK 的话,服务端就会重发 FIN,如果客户端在 2*MSL 的时间内收到了 FIN,就会重新发送 ACK 并再次等待 2MSL,防止 Server 没有收到 ACK 而不断重发 FIN。

MSL(Maximum Segment Lifetime) : 一个片段在网络中最大的存活时间,2MSL 就是一个发送和一个回复所需的最大时间。如果直到 2MSL,Client 都没有再次收到 FIN,那么 Client 推断 ACK 已经被成功接收,则结束 TCP 连接。

6.7 TCP传输可靠性保障

6.7.1 TCP 如何保证传输的可靠性?

  1. 基于数据块传输:应用数据被分割成 TCP 认为最适合发送的数据块,再传输给网络层,数据块被称为报文段或段。
  2. 对失序数据包重新排序以及去重:TCP 为了保证不发生丢包,就给每个包一个序列号,有了序列号能够将接收到的数据根据序列号排序,并且去掉重复序列号的数据就可以实现数据包去重。
  3. 校验和 : TCP 将保持它首部和数据的检验和。这是一个端到端的检验和,目的是检测数据在传输过程中的任何变化。如果收到段的检验和有差错,TCP 将丢弃这个报文段和不确认收到此报文段。
  4. 重传机制 : 在数据包丢失或延迟的情况下,重新发送数据包,直到收到对方的确认应答(ACK)。TCP 重传机制主要有:基于计时器的重传(也就是超时重传)、快速重传(基于接收端的反馈信息来引发重传)、SACK(在快速重传的基础上,返回最近收到的报文段的序列号范围,这样客户端就知道,哪些数据包已经到达服务器了)、D-SACK(重复 SACK,在 SACK 的基础上,额外携带信息,告知发送方有哪些数据包自己重复接收了)。
  5. 流量控制 : TCP 连接的每一方都有固定大小的缓冲空间,TCP 的接收端只允许发送端发送接收端缓冲区能接纳的数据。当接收方来不及处理发送方的数据,能提示发送方降低发送的速率,防止包丢失。TCP 使用的流量控制协议是可变大小的滑动窗口协议(TCP 利用滑动窗口实现流量控制)。
  6. 拥塞控制 : 当网络拥塞时,减少数据的发送。TCP 在发送数据的时候,需要考虑两个因素:一是接收方的接收能力,二是网络的拥塞程度。接收方的接收能力由滑动窗口表示,表示接收方还有多少缓冲区可以用来接收数据。网络的拥塞程度由拥塞窗口表示,它是发送方根据网络状况自己维护的一个值,表示发送方认为可以在网络中传输的数据量。发送方发送数据的大小是滑动窗口和拥塞窗口的最小值,这样可以保证发送方既不会超过接收方的接收能力,也不会造成网络的过度拥塞。

6.7.2 TCP实现流量控制

TCP 利用滑动窗口实现流量控制。流量控制是为了控制发送方发送速率,保证接收方来得及接收。 在接收方发送的确认报文中的窗口字段可以用来控制发送方窗口大小,从而影响发送方的发送速率。将窗口字段设置为 0,则发送方不能发送数据。

为什么需要流量控制? 这是因为双方在通信的时候,发送方的速率与接收方的速率是不一定相等,如果发送方的发送速率太快,会导致接收方处理不过来。如果接收方处理不过来的话,就只能把处理不过来的数据存在 接收缓冲区(Receiving Buffers) 里(失序的数据包也会被存放在缓存区里)。如果缓存区满了发送方还在狂发数据的话,接收方只能把收到的数据包丢掉。出现丢包问题的同时又疯狂浪费着珍贵的网络资源。因此,我们需要控制发送方的发送速率,让接收方与发送方处于一种动态平衡才好。

TCP 为全双工(Full-Duplex, FDX)通信,双方可以进行双向通信,客户端和服务端既可能是发送端又可能是服务端。因此,两端各有一个发送缓冲区与接收缓冲区,两端都各自维护一个发送窗口和一个接收窗口。接收窗口大小取决于应用、系统、硬件的限制(TCP 传输速率不能大于应用的数据处理速率)。通信双方的发送窗口和接收窗口的要求相同

接收窗口的大小是根据接收端处理数据的速度动态调整的。 如果接收端读取数据快,接收窗口可能会扩大。 否则,它可能会缩小。

6.7.3 TCP实现拥塞控制

在某段时间,若对网络中某一资源的需求超过了该资源所能提供的可用部分,网络的性能就要变坏。这种情况就叫拥塞。拥塞控制就是为了防止过多的数据注入到网络中,这样就可以使网络中的路由器或链路不致过载。拥塞控制所要做的都有一个前提,就是网络能够承受现有的网络负荷。拥塞控制是一个全局性的过程,涉及到所有的主机,所有的路由器,以及与降低网络传输性能有关的所有因素。相反,流量控制往往是点对点通信量的控制,是个端到端的问题。流量控制所要做到的就是抑制发送端发送数据的速率,以便使接收端来得及接收。
在这里插入图片描述
为了进行拥塞控制,TCP 发送方要维持一个 拥塞窗口(cwnd) 的状态变量。拥塞控制窗口的大小取决于网络的拥塞程度,并且动态变化。发送方让自己的发送窗口取为拥塞窗口和接收方的接受窗口中较小的一个

TCP 的拥塞控制采用了四种算法,即 慢开始、 拥塞避免、快重传 和 快恢复。在网络层也可以使路由器采用适当的分组丢弃策略(如主动队列管理 AQM),以减少网络拥塞的发生。

  • 慢开始: 慢开始算法的思路是当主机开始发送数据时,如果立即把大量数据字节注入到网络,那么可能会引起网络阻塞,因为现在还不知道网络的符合情况。经验表明,较好的方法是先探测一下,即由小到大逐渐增大发送窗口,也就是由小到大逐渐增大拥塞窗口数值。cwnd 初始值为 1,每经过一个传播轮次,cwnd 加倍。
  • 拥塞避免: 拥塞避免算法的思路是让拥塞窗口 cwnd 缓慢增大,即每经过一个往返时间 RTT 就把发送方的 cwnd 加 1.
  • 快重传与快恢复: 在 TCP/IP 中,快速重传和恢复(fast retransmit and recovery,FRR)是一种拥塞控制算法,它能快速恢复丢失的数据包。没有 FRR,如果数据包丢失了,TCP 将会使用定时器来要求传输暂停。在暂停的这段时间内,没有新的或复制的数据包被发送。有了 FRR,如果接收机接收到一个不按顺序的数据段,它会立即给发送机发送一个重复确认。如果发送机接收到三个重复确认,它会假定确认消息指出的数据段丢失了,并立即重传这些丢失的数据段。有了 FRR,就不会因为重传时要求的暂停被耽误。当有单独的数据包丢失时,快速重传和恢复(FRR)能最有效地工作。当有多个数据信息包在某一段很短的时间内丢失时,它则不能很有效地工作。

7. IP

7.1 IP协议介绍

IP(Internet Protocol,网际协议) 是 TCP/IP 协议中最重要的协议之一,属于网络层的协议,主要作用是定义数据包的格式、对数据包进行路由和寻址,以便它们可以跨网络传播并到达正确的目的地。

目前 IP 协议主要分为两种,一种是过去的 IPv4,另一种是较新的 IPv6,目前这两种协议都在使用,但后者已经被提议来取代前者。每个连入互联网的设备或域(如计算机、服务器、路由器等)都被分配一个 IP 地址(Internet Protocol address),作为唯一标识符。每个 IP 地址都是一个字符序列,如 192.168.1.1(IPv4)、2001:0db8:85a3:0000:0000:8a2e:0370:7334(IPv6) 。

当网络设备发送 IP 数据包时,数据包中包含了 源 IP 地址 和 目的 IP 地址 。源 IP 地址用于标识数据包的发送方设备或域,而目的 IP 地址则用于标识数据包的接收方设备或域。这类似于一封邮件中同时包含了目的地地址和回邮地址。
在这里插入图片描述

7.2 IP地址过滤

IP 地址过滤(IP Address Filtering) 简单来说就是限制或阻止特定 IP 地址或 IP 地址范围的访问。例如,你有一个图片服务突然被某一个 IP 地址攻击,那我们就可以禁止这个 IP 地址访问图片服务。

IP 地址过滤是一种简单的网络安全措施,实际应用中一般会结合其他网络安全措施,如认证、授权、加密等一起使用。单独使用 IP 地址过滤并不能完全保证网络的安全。

7.3 IPv4和IPv6的区别

IPv4(Internet Protocol version 4) 是目前广泛使用的 IP 地址版本,其格式是四组由点分隔的数字,例如:123.89.46.72。IPv4 使用 32 位地址作为其 Internet 地址,这意味着共有约 42 亿( 2^32)个可用 IP 地址。

这么少当然不够用啦!为了解决 IP 地址耗尽的问题,最根本的办法是采用具有更大地址空间的新版本 IP 协议 - IPv6(Internet Protocol version 6)。IPv6 地址使用更复杂的格式,该格式使用由单或双冒号分隔的一组数字和字母,例如:2001:0db8:85a3:0000:0000:8a2e:0370:7334 。IPv6 使用 128 位互联网地址,这意味着越有 2^128(3 开头的 39 位数字,恐怖如斯) 个可用 IP 地址。

除了更大的地址空间之外,IPv6 的优势还包括:

  • 根据接口标识和网络前缀生成全局唯一的 IPv6 地址,而无需依赖 DHCP(Dynamic Host Configuration Protocol)服务器,简化了网络配置和管理。
  • NAT(Network Address Translation,网络地址转换) 成为可选项:IPv6 地址资源充足,可以给全球每个设备一个独立的地址。
  • 对标头结构进行了改进:IPv6 标头结构相较于 IPv4 更加简化和高效,减少了处理开销,提高了网络性能。
    可选的扩展头:允许在 IPv6 标头中添加不同的扩展头(Extension Headers),用于实现不同类型的功能和选项。
  • ICMPv6(Internet Control Message Protocol for IPv6):IPv6 中的 ICMPv6 相较于 IPv4 中的 ICMP 有了一些改进,如邻居发现、路径 MTU 发现等功能的改进,从而提升了网络的可靠性和性能。

7.4 NAT的作用

NAT(Network Address Translation,网络地址转换) 主要用于在不同网络之间转换 IP 地址。它允许将私有 IP 地址(如在局域网中使用的 IP 地址)映射为公有 IP 地址(在互联网中使用的 IP 地址)或者反向映射,从而实现局域网内的多个设备通过单一公有 IP 地址访问互联网。

NAT 不光可以缓解 IPv4 地址资源短缺的问题,还可以隐藏内部网络的实际拓扑结构,使得外部网络无法直接访问内部网络中的设备,从而提高了内部网络的安全性

在这里插入图片描述

8. ARP

8.1MAC地址

MAC 地址的全称是 媒体访问控制地址(Media Access Control Address)。如果说,互联网中每一个资源都由 IP 地址唯一标识(IP 协议内容),那么一切网络设备都由 MAC 地址唯一标识。

可以理解为,MAC 地址是一个网络设备真正的身份证号,IP 地址只是一种不重复的定位方式(比如说住在某省某市某街道的张三,这种逻辑定位是 IP 地址,他的身份证号才是他的 MAC 地址),也可以理解为 MAC 地址是身份证号,IP 地址是邮政地址。MAC 地址也有一些别称,如 LAN 地址、物理地址、以太网地址等。

还有一点要知道的是,不仅仅是网络资源才有 IP 地址,网络设备也有 IP 地址,比如路由器。但从结构上说,路由器等网络设备的作用是组成一个网络,而且通常是内网,所以它们使用的 IP 地址通常是内网 IP,内网的设备在与内网以外的设备进行通信时,需要用到 NAT 协议。

MAC 地址的长度为 6 字节(48 比特),地址空间大小有 280 万亿之多( 2 48 2^{48} 248),MAC 地址由 IEEE 统一管理与分配,理论上,一个网络设备中的网卡上的 MAC 地址是永久的。不同的网卡生产商从 IEEE 那里购买自己的 MAC 地址空间(MAC 的前 24 比特),也就是前 24 比特由 IEEE 统一管理,保证不会重复。而后 24 比特,由各家生产商自己管理,同样保证生产的两块网卡的 MAC 地址不会重复。

MAC 地址具有可携带性、永久性,身份证号永久地标识一个人的身份,不论他到哪里都不会改变。而 IP 地址不具有这些性质,当一台设备更换了网络,它的 IP 地址也就可能发生改变,也就是它在互联网中的定位发生了变化。

8.2 ARP协议的作用

ARP 协议,全称 地址解析协议(Address Resolution Protocol),它解决的是网络层地址和链路层地址之间的转换问题。因为一个 IP 数据报在物理上传输的过程中,总是需要知道下一跳(物理上的下一个目的地)该去往何处,但 IP 地址属于逻辑地址,而 MAC 地址才是物理地址,ARP 协议解决了 IP 地址转 MAC 地址的一些问题。

8.3 ARP协议的原理

ARP 协议工作时有一个大前提,那就是 ARP 表。在一个局域网内,每个网络设备都自己维护了一个 ARP 表,ARP 表记录了某些其他网络设备的 IP 地址-MAC 地址映射关系,该映射关系以 <IP, MAC, TTL> 三元组的形式存储。其中,TTL 为该映射关系的生存周期,典型值为 20 分钟,超过该时间,该条目将被丢弃。

ARP 的工作原理将分两种场景讨论:

  • 同一局域网内的 MAC 寻址;
  • 从一个局域网到另一个局域网中的网络设备的寻址。

8.3.1 同一局域网内的 MAC 寻址

  1. 主机 A 检索自己的 ARP 表,发现 ARP 表中并无主机 B 的 IP 地址对应的映射条目,也就无从知道主机 B 的 MAC 地址。
  2. 主机 A 将构造一个 ARP 查询分组,并将其广播到所在的局域网中。
  3. 主机 A 构造的查询分组将在该局域网内广播,理论上,每一个设备都会收到该分组,并检查查询分组的接收 IP 地址是否为自己的 IP 地址,如果是,说明查询分组已经到达了主机 B,否则,该查询分组对当前设备无效,丢弃之。
  4. 主机 B 收到了查询分组之后,验证是对自己的问询,接着构造一个 ARP 响应分组,该分组的目的地只有一个——主机 A,发送给主机 A。同时,主机 B 提取查询分组中的 IP 地址和 MAC 地址信息,在自己的 ARP 表中构造一条主机 A 的 IP-MAC 映射记录。
  5. 主机 A 终将收到主机 B 的响应分组,提取出该分组中的 IP 地址和 MAC 地址后,构造映射信息,加入到自己的 ARP 表中。

在这里插入图片描述

8.3.2 从一个局域网到另一个局域网中的网络设备的寻址

更复杂的情况是,发送主机 A 和接收主机 B 不在同一个子网中,假设一个一般场景,两台主机所在的子网由一台路由器联通。这里需要注意的是,一般情况下,我们说网络设备都有一个 IP 地址和一个 MAC 地址,这里说的网络设备,更严谨的说法应该是一个接口。

路由器作为互联设备,具有多个接口,每个接口同样也应该具备不重复的 IP 地址和 MAC 地址,路由器的多个接口都各自维护一个 ARP 表,而非一个路由器只维护一个 ARP 表。

  1. 主机 A 查询 ARP 表,期望寻找到目标路由器的本子网接口的 MAC 地址。目标路由器指的是,根据目的主机 B 的 IP 地址,分析出 B 所在的子网,能够把报文转发到 B 所在子网的那个路由器。
  2. 主机 A 未能找到目标路由器的本子网接口的 MAC 地址,将采用 ARP 协议,问询到该 MAC 地址,由于目标接口与主机 A 在同一个子网内,该过程与同一局域网内的 MAC 寻址相同。
  3. 主机 A 获取到目标接口的 MAC 地址,先构造 IP 数据报,其中源 IP 是 A 的 IP 地址,目的 IP 地址是 B 的 IP 地址,再构造链路层帧,其中源 MAC 地址是 A 的 MAC 地址,目的 MAC 地址是本子网内与路由器连接的接口的 MAC 地址。主机 A 将把这个链路层帧,以单播的方式,发送给目标接口。
  4. 目标接口接收到了主机 A 发过来的链路层帧,解析,根据目的 IP 地址,查询转发表,将该 IP 数据报转发到与主机 B 所在子网相连的接口上。到此,该帧已经从主机 A 所在的子网,转移到了主机 B 所在的子网了。
  5. 路由器接口查询 ARP 表,期望寻找到主机 B 的 MAC 地址。
  6. 路由器接口如未能找到主机 B 的 MAC 地址,将采用 ARP 协议,广播问询,单播响应,获取到主机 B 的 MAC 地址。
  7. 路由器接口将对 IP 数据报重新封装成链路层帧,目标 MAC 地址为主机 B 的 MAC 地址,单播发送,直到目的地。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/3449.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

C#/.NET/.NET Core技术前沿周刊 | 第 11 期(2024年10.21-10.31)

前言 C#/.NET/.NET Core技术前沿周刊&#xff0c;你的每周技术指南针&#xff01;记录、追踪C#/.NET/.NET Core领域、生态的每周最新、最实用、最有价值的技术文章、社区动态、优质项目和学习资源等。让你时刻站在技术前沿&#xff0c;助力技术成长与视野拓宽。 欢迎投稿、推荐…

(C#面向初学者的 .NET 的生成 AI) 第 3 部分-ChatGPT 简介

在本部分中&#xff0c;将简要介绍ChatGPT。我们将了解ChatGPT是什么&#xff0c;稍微探讨一下ChatGPT中的角色分工&#xff0c;聊天和消息历史记录的作用。最后我们将查看一个使用OpenAI .NET SDK的ChatGPT代码示例。 1、ChatGPT是什么呢&#xff1f; ChatGPT中的GPT部分来…

Java中的日期与时间的间隔:Period类、Duration类

1、Period 类 在 Java 中&#xff0c;Period 类和 Duration 类都是用于表示时间间隔的类&#xff0c;但它们有不同的使用场景和特性。Period 类位于 java.time 包中&#xff0c;主要用于表示基于日期的时间间隔&#xff0c;即年、月、日的差异。它常用于处理日期之间的计算&am…

算法: 链表题目练习

文章目录 链表题目练习两数相加两两交换链表中的节点重排链表合并 K 个升序链表K 个一组翻转链表 总结 链表题目练习 两数相加 坑: 两个链表都遍历完后,可能需要进位. class Solution {public ListNode addTwoNumbers(ListNode l1, ListNode l2) {ListNode cur1 l1;ListNode…

交替传译收费标准

交替传译是一种高端口服务&#xff0c;常用于国际会议、商务洽谈、学术交流等多语言会议场合&#xff0c;演讲者的发言一般不超过15分钟&#xff0c;交替传译员和演讲者采取接力式交替发言&#xff0c;在这种模式下&#xff0c;口译员需要具备优秀的记忆能力和翻译功底。其价格…

灵动AI视频:重塑视频创作,智启无限灵感!

&#x1f680; 在这个视觉为王的时代&#xff0c;视频创作已成为展现创意与才华的重要舞台。然而&#xff0c;繁琐的剪辑流程、有限的创意资源往往成为制约创作者发挥的瓶颈。灵动AI视频&#xff0c;一款集智能、高效、创意于一体的视频编辑神器&#xff0c;正为视频创作领域带…

生物信息学R语言

检查R语言安装包和依赖 .libPaths() 这里有一个简单的生物信息学分析案例&#xff0c;使用R语言处理基因表达数据。这个示例中&#xff0c;我们将导入模拟的基因表达数据&#xff0c;进行数据预处理&#xff08;如归一化&#xff09;&#xff0c;并使用主成分分析&#xff08…

基于VsCode platformio的stm32开发环境搭建

背景 VsCode作为当下流行的编辑器&#xff0c;且不单单是一个编辑器里面集成了很多插件&#xff0c;使用这些插件可以完成很多功能。 STM32开发环境除了KEIL与IAR&#xff0c;其实还有很多其他的开方方式&#xff0c;ST官方提供了很多的开发软件&#xff0c;基于Eclipse也可以…

【题解】【排序】—— [NOIP2017 普及组] 图书管理员

【题解】【排序】—— [NOIP2017 普及组] 图书管理员 [NOIP2017 普及组] 图书管理员题目背景题目描述输入格式输出格式输入输出样例输入 #1输出 #1 提示 1.思路解析2.AC代码 [NOIP2017 普及组] 图书管理员 通往洛谷的传送门 题目背景 NOIP2017 普及组 T2 题目描述 图书馆中…

华为和思科的配置

vrrp和mstp 思路 vrrp是用来虚拟网关&#xff0c;噢&#xff0c;是虚拟一条虚拟网关 优先级&#xff0c;priority越大越优先&#xff0c;优先级相同&#xff0c;哪个的路由器的vrrp先起来&#xff0c;谁就是主 mstp是快速生成树协议&#xff0c;防止环路用的 优先级越小越优…

React 前端如何通过组件完成 “下载 Excel模板” 和 “上传 Excel 文件并读取内容生成可使用的对象数组”

文章目录 一、Excel 模板下载01、代码示例 二、Excel 文件上传01、文件展示02、示例代码03、前端样式展示04、数据结果展示 三、完整代码 本文的业务需求是建立在批量导入数据的情况下&#xff0c;普通组件只能少量导入&#xff0c;数据较多的情况都会选择 Excel 数据导入&…

『统计检验』一篇文章入门置信区间

文章目录 置信区间点估计和区间估计置信度置信区间的计算置信区间计算的具体例子 参考文献 置信区间 置信区间是总体参数落在测量结果周围的程度 点估计和区间估计 点估计&#xff1a;通过样本数据估计总体参数 ⇒ \Rightarrow ⇒使用样本统计量&#xff08;如样本均值、样本…

ESRALLY安装与使用

ESRALLY安装与使用 geonames、geopoint:都是和地理位置相关的,如果需要测试ES在地理位置处理的性能可以选用 http_logs:是http_server的,如果要测服务器日志、redis日志、apache日志可以选用 说明:esrally 自带的测试数据即为 rally_track 文件夹中的内容,主要包括: Ge…

SpringMvc day1101

ok了家人们&#xff0c;今天我们继续 studying springMvc&#xff0c;let‘me see see 四.SSM整合 SpringMVC Spring MyBatis WebConfig SpringConfigMybatisConfig SpringMvcSupport jdbc.properties 表现层 业务层持久层 EmpController EmpServiceEmpMapper EmpServiceIm…

关于基于 GA102 核心的显卡及主要参数

基于 GA102 核心的显卡的主要参数&#xff1a; 主要用途 高端游戏, 专业图形处理 高端游戏, 专业图形处理 高端游戏, 专业图形处理 高端游戏, 专业图形处理 专业图形处理, 数据中心 数据中心, AI 计算 解释 CUDA 核心数&#xff1a;更多的 CUDA 核心意味着更强的并行计算能力。…

C++ 多态 (详解)

多态的概念 通俗来说&#xff0c;就是多种形态&#xff0c;具体点就是去完成某个行为&#xff0c;当不同的对象去完成时会产生出不同的状态。举个栗子&#xff1a;比如买票这个行为&#xff0c;当普通人买票时&#xff0c;是全价买票&#xff1b;学生买票时&#xff0c;是半价…

雷池社区版新版本功能防绕过人机验证解析

前两天&#xff0c;2024.10.31&#xff0c;雷池社区版更新7.1版本&#xff0c;其中有一个功能&#xff0c;新增请求防重放 更新记录&#xff1a;hhttps://docs.waf-ce.chaitin.cn/zh/%E7%89%88%E6%9C%AC%E6%9B%B4%E6%96%B0%E8%AE%B0%E5%BD%95 仔细研究了这个需求&#xff0c;…

省级-社会保障水平数据(2007-2022年)

社会保障水平是一个综合性的概念&#xff0c;它不仅涉及到一个国家或地区的社会保障制度覆盖范围&#xff0c;还包括了提供的保障种类与水平&#xff0c;以及这些制度在满足公民基本生活需求方面的能力。 2007-2022年省级-社会保障水平数据.zip资源-CSDN文库https://download.…

如何搭建汽车行业AI知识库:定义+好处+方法步骤

在汽车行业&#xff0c;大型车企面临着员工众多、价值链长、技术密集和知识传播难等挑战。如何通过有效的知识沉淀与应用&#xff0c;提升各部门协同效率&#xff0c;快速响应客户咨询&#xff0c;降低销售成本&#xff0c;并开启体系化、可持续性的知识管理建设&#xff0c;成…

【C++篇】数据之林:解读二叉搜索树的优雅结构与运算哲学

文章目录 二叉搜索树详解&#xff1a;基础与基本操作前言第一章&#xff1a;二叉搜索树的概念1.1 二叉搜索树的定义1.1.1 为什么使用二叉搜索树&#xff1f; 第二章&#xff1a;二叉搜索树的性能分析2.1 最佳与最差情况2.1.1 最佳情况2.1.2 最差情况 2.2 平衡树的优势 第三章&a…