当前位置: 首页 > news >正文

驱动-自旋锁

前面原子操作进行了讲解, 并使用原子整形操作对并发与竞争实验进行了改进,但是原子操作只能对整形变量或者位进行保护, 而对于结构体或者其他类型的共享资源, 原子操作就力不从心了, 这时候就轮到自旋锁的出场了。

两个 app 应用程序之间对共享资源的竞争访问引起了数据传输错误, 而在 Linux 内核中, 提供了四种处理并发与竞争的常见方法:
分别是原子操作、 自旋锁、 信号量、 互斥体, 这里了解下原子操作

文章目录

  • 自旋锁概念
  • 工作原理
  • 特点
  • 常用API
  • 参考资料
  • 驱动-原子操作实验
    • 实验源码 spinlock.c
      • 部分源码解读
    • Makefile 编译文件
    • 测试程序 app.c
    • 加载驱动 insmod
    • 查看 dev 下生成的字符设备
    • ./app 执行程序 验证
  • 总结


自旋锁概念

自旋锁是一种低级的同步原语,用于在多处理器系统中保护共享资源。与互斥锁不同,当一个线程尝试获取已被占用的自旋锁时,它不会阻塞或睡眠,而是会在一个循环中不断检查锁的状态(即"自旋"),直到锁变为可用状态。

工作原理

  • 尝试获取锁:线程尝试通过原子操作获取锁

  • 锁可用:获取成功,线程继续执行临界区代码

  • 锁被占用:线程进入忙等待循环,不断检查锁状态

  • 锁释放:当锁持有者释放锁后,等待线程可以获取锁

特点

  • 忙等待:不放弃CPU,持续检查锁状态

  • 短临界区:适合保护执行时间很短的代码段

  • 无上下文切换:避免了线程切换的开销

  • 多处理器有效:在单处理器系统上可能浪费CPU周期

常用API

#include <linux/spinlock.h>// 定义和初始化
spinlock_t my_lock;
spin_lock_init(&my_lock);// 获取锁
spin_lock(&my_lock);       // 获取锁,禁用本地 CPU 中断
spin_lock_irq(&my_lock);   // 获取锁并禁用硬件中断
spin_lock_irqsave(&my_lock, flags); // 保存中断状态并获取锁// 释放锁
spin_unlock(&my_lock);     // 释放锁
spin_unlock_irq(&my_lock); // 释放锁并恢复中断
spin_unlock_irqrestore(&my_lock, flags); // 释放锁并恢复之前的中断状态// 尝试获取锁
int spin_trylock(&my_lock); // 非阻塞尝试获取锁,成功返回非零

参考资料

接下来还是以前面字符设备 动态参数传递实验为基础,打开访问字符设备实验。 所以以前知识点 建议了解
在字符设备这块内容,所有知识点都是串联起来的,需要整体来理解,缺一不可,建议多了解一下基础知识
驱动-申请字符设备号
驱动-注册字符设备
驱动-创建设备节点
驱动-字符设备驱动框架
驱动-杂项设备
驱动-内核空间和用户空间数据交换
驱动-文件私有数据
Linux驱动之 原子操作
Linux驱动—原子操作

驱动-原子操作实验

实验源码 spinlock.c

#include <linux/init.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/kdev_t.h>
#include <linux/cdev.h>
#include <linux/uaccess.h>
#include <linux/delay.h>
#include <linux/atomic.h>
#include <linux/errno.h>static spinlock_t spinlock_test;//定义spinlock_t类型自旋变量
static  int flag=1;static int open_test(struct  inode  *inode,struct file *file){spin_lock(&spinlock_test); //自旋枷锁if(flag!=1){  //判断标志位flag 的值是否等于1 spin_unlock(&spinlock_test); return -EBUSY;}flag=0; //将标志位的值设置为0spin_unlock(&spinlock_test);   //自旋锁解锁printk("\n this is open_test \n");return 0;};static ssize_t read_test(struct file *file,char __user *ubuf,size_t len,loff_t *off)
{int ret;char kbuf[10] = "topeet";//定义char类型字符串变量kbufprintk("\nthis is read_test \n");ret = copy_to_user(ubuf,kbuf,strlen(kbuf));//使用copy_to_user接收用户空间传递的数据if (ret != 0){printk("copy_to_user is error \n");}printk("copy_to_user is ok \n");return 0;
}
static char kbuf[10] = {0};//定义char类型字符串全局变量kbuf
static ssize_t write_test(struct file *file,const char __user *ubuf,size_t len,loff_t *off)
{int ret;ret = copy_from_user(kbuf,ubuf,len);//使用copy_from_user接收用户空间传递的数据if (ret != 0){printk("copy_from_user is error\n");}if(strcmp(kbuf,"topeet") == 0 ){//如果传递的kbuf是topeet就睡眠四秒钟ssleep(4);}else if(strcmp(kbuf,"itop") == 0){//如果传递的kbuf是itop就睡眠两秒钟ssleep(2);}printk("copy_from_user buf is %s \n",kbuf);return 0;
}
static int release_test(struct inode *inode,struct file *file)
{//printk("\nthis is release_test \n");spin_lock(&spinlock_test);//自旋锁加锁flag = 1;spin_unlock(&spinlock_test);//自旋锁解锁	return 0;
}struct chrdev_test
{dev_t  dev_num;  //定义dev_t类型变量来表示设备号int major,minor; //定义int 类型的主设备号和次设备号struct cdev cdev_test;   //定义字符设备struct class *class_test;   //定义结构体变量class 类
};struct chrdev_test dev1; //创建chardev_test类型结构体变量static struct file_operations fops_test = {.owner=THIS_MODULE,//将owner字段指向本模块,可以避免在模块的操作正在被使用时卸载该模块.open = open_test,//将open字段指向chrdev_open(...)函数.read = read_test,//将open字段指向chrdev_read(...)函数.write = write_test,//将open字段指向chrdev_write(...)函数.release = release_test,//将open字段指向chrdev_release(...)函数
};//定义file_operations结构体类型的变量cdev_test_opsstatic int __init chrdev_fops_init(void)//驱动入口函数
{if(alloc_chrdev_region(&dev1.dev_num,0,1,"chrdev_name") < 0){printk("alloc_chrdev_region is error\n");}   printk("alloc_chrdev_region is ok\n");dev1.major=MAJOR(dev1.dev_num);//通过MAJOR()函数进行主设备号获取dev1.minor=MINOR(dev1.dev_num);//通过MINOR()函数进行次设备号获取printk("major is %d\n",dev1.major);printk("minor is %d\n",dev1.minor);使用cdev_init()函数初始化cdev_test结构体,并链接到cdev_test_ops结构体cdev_init(&dev1.cdev_test,&fops_test);dev1.cdev_test.owner = THIS_MODULE;//将owner字段指向本模块,可以避免在模块的操作正在被使用时卸载该模块 cdev_add(&dev1.cdev_test,dev1.dev_num,1);printk("cdev_add is ok\n");dev1.class_test  = class_create(THIS_MODULE,"class_test");//使用class_create进行类的创建,类名称为class_testdevice_create(dev1.class_test,NULL,dev1.dev_num,NULL,"device_test");//使用device_create进行设备的创建,设备名称为device_testreturn 0;
}
static void __exit chrdev_fops_exit(void)//驱动出口函数
{cdev_del(&dev1.cdev_test);//使用cdev_del()函数进行字符设备的删除unregister_chrdev_region(dev1.dev_num,1);//释放字符驱动设备号 device_destroy(dev1.class_test,dev1.dev_num);//删除创建的设备class_destroy(dev1.class_test);//删除创建的类printk("module exit \n");}
module_init(chrdev_fops_init);//注册入口函数
module_exit(chrdev_fops_exit);//注册出口函数
MODULE_LICENSE("GPL v2");//同意GPL开源协议
MODULE_AUTHOR("wang fang chen "); //作者信息

部分源码解读

  • 上面测试源码demo,完全还是基于之前字符设备的一套,和 原子操作实验代码完全一样,唯一区别是没有用原子操作来防止竞争,用了自旋锁来防止资源竞争
  • 可以简要看一下 自旋锁这里是一堆一堆出现的。 spin_lock(&spinlock_test); //自旋枷锁 spin_unlock(&spinlock_test); //自旋锁解锁
    就是枷锁 设置flag,然后解锁。 恢复flag 状态时候 就枷锁->设置flag 的值->解锁。

Makefile 编译文件

#!/bin/bash
export ARCH=arm64
export CROSS_COMPILE=aarch64-linux-gnu-
obj-m += spinlock.o
KDIR :=/home/wfc123/Linux/rk356x_linux/kernel
PWD ?= $(shell pwd)
all:make -C $(KDIR) M=$(PWD) modulesclean:make -C $(KDIR) M=$(PWD) clean

测试程序 app.c

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>int main(int argc,char *argv[])
{int fd;//定义int类型的文件描述符char str1[10]={0};//定义读取缓冲区str1fd=open(argv[1],O_RDWR,0666);//调用open函数,打开输入的第一个参数文件,权限为可读可写//fd=open("/dev/device_test",O_RDWR,0666);//调用open函数,打开输入的第一个参数文件,权限为可读可写if(fd<0){printf("open is error\n");return -1;}printf("open is ok\n");if(strcmp(argv[2],"topeet")==0){write(fd,"topeet",sizeof(str1)); }else if(strcmp(argv[2],"itop")==0){write(fd,"itop",sizeof(str1)); }close(fd);//调用close函数,对取消文件描述符到文件的映射return 0;
}

编译 测试程序 app


aarch64-linux-gnu-gcc -o app app.c -static

加载驱动 insmod

执行命令,测试结果如下:
在这里插入图片描述

查看 dev 下生成的字符设备

ls /dev/device_test
[root@topeet:/mnt/sdcard]# ls /dev/device_test
/dev/device_test
[root@topeet:/mnt/sdcard]#

./app 执行程序 验证

root@topeet:/mnt/sdcard]# ./app /dev/device_test topeet &
de[root@topeet:/mnt/sdcard]# ./app /dev/device_test itopopen is okopen is error

这个就验证了 自旋锁 起作用了的,保护了 变量 flag

总结

这里简单介绍了自旋锁的应用场景,需要了解原理和使用api 即可。

http://www.xdnf.cn/news/2395.html

相关文章:

  • opencv函数展示2
  • 4.17学习总结
  • 智能云图库-12-DDD重构
  • 【从零实现高并发内存池】thread cache、central cache 和 page cache 回收策略详解
  • DSO:牛津大学推出的物理一致性3D模型优化框架
  • Java与MySQL数据库连接的JDBC驱动配置教程
  • Java基础知识面试题(已整理Java面试宝典pdf版)
  • Operator 开发入门系列(一):Hello World
  • 什么是分库分表?
  • Linux中NFS服务设置
  • 《MySQL:MySQL表结构的基本操作》
  • 【天梯赛练习】L2-035 完全二叉树的层序遍历
  • 阿里云服务器的docker环境安装nacos--实践
  • 开源一体化白板工具Drawnix本地部署打造毫秒级响应的远程协作空间
  • 中介者模式(Mediator Pattern)
  • 目标检测概述
  • LeetCode 2176.统计数组中相等且可以被整除的数对:两层遍历模拟
  • Ubuntu 20.04.6编译安装COMFAST CF-AX90无线网卡驱动
  • Delphi Ini文件对UTF8支持不爽的极简替代方案
  • SpringAI+DeepSeek大模型应用开发——4 对话机器人
  • Qt界面卡住变慢的解决方法
  • 常用UI设计工具及平台概览
  • 【Pandas】pandas DataFrame xs
  • 关于视频的一些算法内容,不包含代码等
  • Java 中 Synchronized如何保证可见性
  • html+js+clickhouse环境搭建
  • Java项目——校园社交网络平台的设计与实现
  • 考研单词笔记 2025.04.17
  • 音视频学习 - ffmpeg 编译与调试
  • 【零基础】基于DeepSeek-R1与Qwen2.5Max的行业洞察自动化平台