【金融风控项目-07】:业务规则挖掘案例

文章目录

  • 1.规则挖掘简介
  • 2 规则挖掘案例
    • 2.1 案例背景
    • 2.2 规则挖掘流程
    • 2.3 特征衍生
    • 2.4 训练决策树模型
    • 2.5 利用结果划分分组

1.规则挖掘简介

  • 两种常见的风险规避手段:
    • AI模型
    • 规则
  • 如何使用规则进行风控
    • **使用一系列逻辑判断(以往从职人员的经验)**对客户群体进行区分, 不同群体逾期风险有显著差别
    • 比如:多头借贷是否超过一定的数量,设定一个值,如果超过这个值则拒绝借贷
    • 采用一条规则就可以将用户进行分组,可以将用户划分到高风险组,在高风险组中的用户则直接进行拒绝;如果不在高风险组就进入到下一条规则的判断
  • 规则和AI模型的优点:
    • 规则:可以快速使用,便于业务人员理解,但是判断相对简单粗暴,单一维度不满条件直接拒绝
    • AI模型:开发周期长,对比使用规则更复杂,但是更加灵活,用于对于风控精度要求更高的场景。
  • 可以通过AI模型辅助建立规则引擎,决策树很适合规则挖掘的场景。

2 规则挖掘案例

2.1 案例背景

某互联网公司拥有多个业务板块,每个板块下都有专门的贷款产品。

  • 外卖平台业务的骑手可以向平台申请“骑手贷”

  • 电商平台业务的商户可以申请“网商贷”

  • 网约车业务的司机可以向平台申请“司机贷”

公司有多个类似的场景,共用相同的规则引擎及申请评分卡,贷款人都是该公司的兼职人员
近期发现,“司机贷”的逾期率较高

  1. 整个金融板块30天逾期率为1.5%
  2. 司机贷”产品的30天逾期达到了5%

期望解决方案:

  • 现有的风控架构趋于稳定
  • 希望快速开发快速上线,解决问题
    • 尽量不使用复杂的方法
    • 考虑使用现有数据挖掘出合适的业务规则

数据:
在这里插入图片描述

  • 常用的数据分为两类:数值型数据和类别型数据
  • 原始数据中有些数据需要进行处理,有些数据不需要进行处理

2.2 规则挖掘流程

加载数据

import pandas as pd
import numpy as np
data = pd.read_excel('../data/rule_data.xlsx')
data.head()

在这里插入图片描述

data.shape

在这里插入图片描述

# 查看有多少类别
data.class_new.unique()

在这里插入图片描述

data.info()

在这里插入图片描述

  • create_dt - 有很多缺失值,需要进行处理

2.3 特征衍生

原始数据的特征太少,考虑在原始特征基础上衍生出一些新的特征来,将特征分成三类分别处理

  • 数值类型变量:按照id分组后,采用多种方式聚合,衍生新特征
    • 最终得到每个特征按照id分组聚合之后的df
  • 分类类型变量,按照id分组后,聚合查询条目数量,衍生新特征
  • 其它:日期时间类型,是否违约(标签),用户评级等不做特征衍生处理
# 原始数据中有19个特征
# org_list - 不用于进行特征衍生的列
# agg_list - 数值类型的特征,需要进行分组聚合
# count_list - 类别型特征,需要进行分组计数
org_list = ['uid','create_dt','oil_actv_dt','class_new','bad_ind']
agg_list = ['oil_amount','discount_amount','sale_amount','amount','pay_amount','coupon_amount','payment_coupon_amount']
count_list = ['channel_code','oil_code','scene','source_app','call_source']
  • 对原始数据进行copy,防止操作出错,需要重新加载数据
df = data[org_list].copy()
df[agg_list] = data[agg_list].copy()
df[count_list] = data[count_list].copy()
# 查看数据是不是又缺失值
df.isna().sum()

在这里插入图片描述

  • 缺失值填充
# 按照uid和create_dt进行降序排序
df.sort_values(['uid','create_dt'],ascending = False)
  • 对creat_dt做补全,用oil_actv_dt来填补
# 传入两个值
ef time_isna(x,y):if str(x) == 'NaT':x = yreturn x
df2 = df.sort_values(['uid','create_dt'],ascending = False)
# apply返回一个由自定函数返回值组成的series
# axis = 1 将df2的行送入到series中 ,df传入的虽然是行,但是结构仍然是series
df2['create_dt'] = df2.apply(lambda x: time_isna(x.create_dt,x.oil_actv_dt),axis = 1)
# df2.apply(lambda x: time_isna(x.create_dt,x.oil_actv_dt),axis = 1)

在这里插入图片描述

  • 截取申请时间和放款时间不超过6个月的数据(考虑数据时效性)
# 两个时间相减得到的是timedelta类型的数据
# 需要通过x.days获取到具体的不带days的数据
df2['dtn'] = (df2.oil_actv_dt - df2.create_dt).apply(lambda x :x.days)
df = df2[df2['dtn']<180]
df.head()

在这里插入图片描述

  • 将用户按照id编号排序,并保留最近一次申请时间,确保每个用户有一条记录(每个样本送入到模型中都是一条数据)
base = df[org_list] # 不进行特征衍生的数据
base['dtn'] = df['dtn']
base = base.sort_values(['uid','create_dt'],ascending = False)
base = base.drop_duplicates(['uid'],keep = 'first')
base.shape 

在这里插入图片描述
在这里插入图片描述

  • 特征值衍生
    • 对连续统计型变量进行函数聚合
    • 方法包括对历史特征值计数、求历史特征值大于0的个数、求和、求均值、求最大/小值、求最小值、求方差、求极差等
gn = pd.DataFrame() # 创建一个空的dataframe
for i in agg_list: # 遍历需要进行特征衍生的特征# 按照uid进行分组,groupby()应用apply函数传入的是每个组的df# 获取长度tp = df.groupby('uid').apply(lambda df:len(df[i])).reset_index()tp.columns = ['uid',i + '_cnt']if gn.empty:gn = tpelse:gn = pd.merge(gn,tp,on = 'uid',how = 'left')#求历史特征值大于0的个数tp = df.groupby('uid').apply(lambda df:np.where(df[i]>0,1,0).sum()).reset_index()tp.columns = ['uid',i + '_num']if gn.empty:gn = tpelse:gn = pd.merge(gn,tp,on = 'uid',how = 'left')#求和tp = df.groupby('uid').apply(lambda df:np.nansum(df[i])).reset_index()tp.columns = ['uid',i + '_tot']if gn.empty:gn = tpelse:gn = pd.merge(gn,tp,on = 'uid',how = 'left')#求平均值tp = df.groupby('uid').apply(lambda df:np.nanmean(df[i])).reset_index()tp.columns = ['uid',i + '_avg']if gn.empty:gn = tpelse:gn = pd.merge(gn,tp,on = 'uid',how = 'left')#求最大值tp = df.groupby('uid').apply(lambda df:np.nanmax(df[i])).reset_index()tp.columns = ['uid',i + '_max']if gn.empty:gn = tpelse:gn = pd.merge(gn,tp,on = 'uid',how = 'left')#求最小值tp = df.groupby('uid').apply(lambda df:np.nanmin(df[i])).reset_index()tp.columns = ['uid',i + '_min']if gn.empty:gn = tpelse:gn = pd.merge(gn,tp,on = 'uid',how = 'left')#求方差tp = df.groupby('uid').apply(lambda df:np.nanvar(df[i])).reset_index()tp.columns = ['uid',i + '_var']if gn.empty:gn = tpelse:gn = pd.merge(gn,tp,on = 'uid',how = 'left')#求极差tp = df.groupby('uid').apply(lambda df:np.nanmax(df[i]) -np.nanmin(df[i]) ).reset_index()tp.columns = ['uid',i + '_ran']if gn.empty:gn = tpelse:gn = pd.merge(gn,tp,on = 'uid',how = 'left')
  • 查看衍生结果
gn.columns

在这里插入图片描述

  • 对dstc_lst变量求distinct个数
    • 对类别型的变量,按照uid进行分组之后,去重之后进行计数
gc = pd.DataFrame()
for i in count_list:tp = df.groupby('uid').apply(lambda df: len(set(df[i]))).reset_index()tp.columns = ['uid',i + '_dstc']if gc.empty:gc = tpelse:gc = pd.merge(gc,tp,on = 'uid',how = 'left')
  • 将三个部分的df进行拼接
fn = pd.merge(base,gn,on= 'uid')
fn = pd.merge(fn,gc,on= 'uid') 
fn.shape
  • merge过程中可能会出现缺失情况,填充缺失值
fn = fn.fillna(0)
fn.head(100)

2.4 训练决策树模型

  • 选择数据,训练模型
x = fn.drop(['uid','oil_actv_dt','create_dt','bad_ind','class_new'],axis = 1)
y = fn.bad_ind.copy()
from sklearn import tree
dtree = tree.DecisionTreeRegressor(max_depth = 2,min_samples_leaf = 500,min_samples_split = 5000)
dtree = dtree.fit(x,y)
  • 输出决策树图像
import pydotplus 
from IPython.display import Image
from six import StringIO
# import os
# os.environ["PATH"] += os.pathsep + 'C:/Program Files (x86)/Graphviz2.38/bin/'
# with open("dt.dot", "w") as f:
#     tree.export_graphviz(dtree, out_file=f)
dot_data = StringIO() # 开辟内存空间
# dtree - 指定模型
# out_file - 指定空间
# feature_name - 指定特征矩阵x的列名 x.columns
# class_name - 指定y标签列的列名
tree.export_graphviz(dtree, out_file=dot_data,feature_names=x.columns,class_names=['bad_ind'],filled=True, rounded=True,special_characters=True)
dot_data.getvalue()
graph = pydotplus.graph_from_dot_data(dot_data.getvalue()) 

在这里插入图片描述
在这里插入图片描述

2.5 利用结果划分分组

group_1 = fn.loc[(fn.amount_tot>48077.5)&(fn.amount_cnt>3.5)].copy()
group_1['level'] = 'past_A'
group_2 = fn.loc[(fn.amount_tot>48077.5)&(fn.amount_cnt<=3.5)].copy()
group_2['level'] = 'past_B'
group_3 = fn.loc[fn.amount_tot<=48077.5].copy()
group_3['level'] = 'past_C'
  • 如果拒绝past_C类客户,则可以使整体负样本占比下降至0.021
  • 如果将past_B也拒绝掉,则可以使整体负样本占比下降至0.012
  • 至于实际对past_A、past_B、past_C采取何种策略,要根据利率来做线性规划,从而实现风险定价

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/19878.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

RabbitMQ高可用

生产者确认 生产者确认就是&#xff1a;发送消息的人&#xff0c;要确保消息发送给了消息队列&#xff0c;分别是确保到了交换机&#xff0c;确保到了消息队列这两步。 1、在发送消息服务的application.yml中添加配置 spring:rabbitmq:publisher-confirm-type: correlated …

Redis的特性ubuntu进行安装

文章目录 1.六大特性1.1内存存储数据1.2可编程1.3可扩展1.4持久化1.5集群1.6高可用1.7速度快 2.具体应用场景&#xff08;了解&#xff09;3.Ubuntu安装Redis3.1安装指令3.2查看状态3.3查找配置文件3.4修改文件内容3.5重启服务器生效3.6安装客户端并进行检查 4.Redis客户端介绍…

本地音乐服务器(三)

6. 删除音乐模块设计 6.1 删除单个音乐 1. 请求响应设计 2. 开始实现 首先在musicmapper新增操作 Music findMusicById(int id);int deleteMusicById(int musicId); 其次新增相对应的.xml代码&#xff1a; <select id"findMusicById" resultType"com.exa…

leetcode【滑动窗口】相关题目分析讲解:leetcode209,leetcode904

经典滑动窗口(leetcode209) 题干 题目难度&#xff1a;简单 题目分析 要求找到符合大于等于target的长度最小的子数组的常规思路便是暴力破解——遍历数组&#xff0c;通过两层遍历&#xff0c;找到最小的子数组并返回。 但显而易见&#xff0c;这样时间复杂度会是O(n2)级…

ArkTS组件结构和状态管理

1. 认识基本的组件结构 ArkTS通过装饰器Component 和Entry 装饰 struct 关键字声明的数据结构&#xff0c;构成一个自定义组件 自定义组件中提供了一个build函数&#xff0c;开发者需要在函数内以链式调用的方式进行基本的UI描述&#xff0c;UI描述的方法请参考UI描述规范srtuc…

语义分割(semantic segmentation)

语义分割(semantic segmentation) 文章目录 语义分割(semantic segmentation)图像分割和实例分割代码实现 语义分割指将图片中的每个像素分类到对应的类别&#xff0c;语义区域的标注和预测是 像素级的&#xff0c;语义分割标注的像素级的边界框显然更加精细。应用&#xff1a…

【STM32】在 STM32 USB 设备库添加新的设备类

说实话&#xff0c;我非常想吐槽 STM32 的 USB device library&#xff0c;总感觉很混乱。 USB Device library architecture 根据架构图&#xff1a; Adding a custom class 如果你想添加新的设备类&#xff0c;必须修改的文件有 usbd_desc.cusbd_conf.cusb_device.c 需要…

【母线槽分类与选型】

母线槽是一种高效、安全、节能的输电设备&#xff0c;广泛应用于各类建筑和工业领域。母线槽可以根据不同的分类方式进行划分&#xff0c;例如根据其结构、用途、导体材质等。母线槽以铜或铝作为导体、用非烯性绝缘支撑&#xff0c;然后装到金属槽中而形成的新型导体。在高层建…

一些任务调度的概念杂谈

任务调度 1.什么是调度任务 依赖&#xff1a;依赖管理是整个DAG调度的核心。调度依赖包括依赖策略和依赖区间。 依赖分为任务依赖和作业依赖&#xff0c;任务依赖是DAG任务本身的依赖关系&#xff0c;作业依赖是根据任务依赖每天的作业产生的。两者在数据存储模型上有所不同…

Unifying Top-down and Bottom-up Scanpath Prediction Using Transformers

Abstract 大多数视觉注意力模型旨在预测自上而下或自下而上的控制&#xff0c;这些控制通过不同的视觉搜索和自由观看任务进行研究。本文提出了人类注意力变换器&#xff08;Human Attention Transformer&#xff0c;HAT&#xff09;&#xff0c;这是一个能够预测两种形式注意力…

解决MindSpore-2.4-GPU版本的安装问题

问题背景 虽说在MindSpore-2.3之后的版本中不在正式的发行版中支持GPU硬件后端&#xff0c;但其实在开发分支版本中对GPU后端是有支持的&#xff1a; 但是在安装的过程中可能会遇到一些问题或者报错&#xff0c;这里复现一下我的Ubuntu-20.04环境下的安装过程。 Pip安装 基本的…

【拥抱AI】如何使用BERT等预训练模型计算语义相似度

使用BERT等预训练模型计算语义相似度是一种非常有效的方法&#xff0c;可以捕捉句子之间的深层次语义关系。下面是一个详细的步骤指南&#xff0c;介绍如何使用BERT和Sentence-BERT来计算语义相似度。 1. 环境准备 1.1 安装必要的库 首先&#xff0c;确保你已经安装了必要的…

Excel常用技巧分享

excel单元格内换行 直接按回车会退出当前单元格的编辑&#xff0c;如果需要在单元格中换行&#xff0c;需要按下AltEnter。 excel插入多行或多列 WPS 在WPS中想要插入多行&#xff0c;只需在右键菜单中输入对应的数字即可。 Office Excel excel中相对麻烦一些&#xff0c;比…

C# .NET环境下调用ONNX格式YOLOV8模型问题总结

我的环境是&#xff1a; Visual Studio: 2019 显卡&#xff1a; 一、遇到问题 1、EntryPointNotFoundException:无法在DLL“onnxruntime”中找到名为“OrtGetApiBase”的入口点。差了下原因&#xff0c;入口点是启动项中的问题。 原因&#xff1a;之前用yolov7时安装的版本在C…

【PTA】【数据库】【SQL命令】编程题1

数据库SQL命令测试题1 10-1 显示教工编号以02开头的教师信息 作者 冰冰 单位 广东东软学院 显示教工编号以02开头的教师信息 提示&#xff1a;请使用SELECT语句作答。 表结构: CREATE TABLE teacher ( TId CHAR(5) NOT NULL, -- 教师工号&#xff0c;主键 DId CHAR(2) …

VSCode快速生成vue组件模版

1&#xff0c;点击设置&#xff0c;找到代码片段 2&#xff0c;搜索vue&#xff0c;打开vue.json 3&#xff0c;添加模版 vue2模板 "vue2": {"prefix": "vue2","body": ["<template>"," <div>$0</di…

理解DOM:前端开发的基础

理解DOM 在前端开发中&#xff0c;DOM&#xff08;文档对象模型&#xff09;是一个至关重要的概念。它不仅定义了如何通过编程方式访问和修改网页内容&#xff0c;还为我们提供了一种结构化的方式来与页面交互。本文将带你了解DOM的基本概念、不同节点的操作以及何时可以进行更…

如何将几个音频合成一个音频?非常简单的几种合成方法

如何将几个音频合成一个音频&#xff1f;音频合成不仅仅是将不同的音频文件按顺序排列&#xff0c;它还可能涉及到音量调节、剪辑、淡入淡出、音效调整等多个方面。对于一些专业的音频制作人员来说&#xff0c;音频的每一部分细节都可能需要精心打磨&#xff0c;以确保最终合成…

虚拟化表格(Virtualized Table)性能优化

文章目录 功能介绍一开始的代码领导让我们分析一下开始优化如何监听事件和传参&#xff1f;定位操作栏更加优化 功能介绍 菜鸟最近做的一个功能如下&#xff1a; 后端返回两个很大的数组&#xff0c;例如&#xff1a;数组a 1w条&#xff0c;数组b 2w条&#xff0c;然后要操作b…

Orcad 输出有链接属性的PDF

安装adobe pdf安装Ghostscript修改C:\Cadence\SPB_16.6\tools\capture\tclscripts\capUtils\capPdfUtil.tcl ​ 设置默认打印机为 Adobe PDF ​ 将Ghostscript的路径修改正确 打开cadence Orcad &#xff0c;accessories->candece Tcl/Tk Utilities-> Utilities->PD…