Kafka进阶_1.生产消息

文章目录

  • 一、Controller选举
  • 二、生产消息
    • 2.1、创建待发送数据
    • 2.2、创建生产者对象,发送数据
    • 2.3、发送回调
      • 2.3.1、异步发送
      • 2.3.2、同步发送
    • 2.4、拦截器
    • 2.5、序列化器
    • 2.6、分区器
    • 2.7、消息可靠性
      • 2.7.1、acks = 0
      • 2.7.2、acks = 1(默认)
      • 2.7.3、acks = -1或all
    • 2.8、部分重要的生产者参数
      • 2.8.1、linger.ms
    • 2.9、Producer总结

如果想要先了解kafka的基础基础架构,可以看 什么是topic、broker、分区、副本

一、Controller选举

一句话总结:先到先得。

  Controller,是Apache Kafka的核心组件。它的主要作用是在Apache Zookeeper的帮助下管理和协调控制整个Kafka集群。下面介绍一下Zookeeper的特点:

  • 一个是在ZooKeeper软件中创建节点Node,创建一个Node时,我们会设定这个节点是持久化创建,还是临时创建。所谓的持久化创建,就是Node一旦创建后会一直存在,而临时创建,是根据当前的客户端连接创建的临时节点Node,一旦客户端连接断开,那么这个临时节点Node也会被自动删除,所以这样的节点称之为临时节点。
  • ZooKeeper节点是不允许有重复的,所以多个客户端创建同一个节点,只能有一个创建成功。
  • 另外一个是客户端可以在ZooKeeper的节点上增加监听器,用于监听节点的状态变化,一旦监听的节点状态发生变化,那么监听器就会触发响应,实现特定监听功能。

  集群中的任意一台Broker都能充当Controller的角色,但是,在整个集群运行过程中,只能有一个Broker成为Controller。也就是说,每个正常运行的Kafka集群,在任何时刻都有且只有一个Controller。

在这里插入图片描述
  最先在Zookeeper上创建临时节点/controller成功的Broker就是Controller。Controller重度依赖Zookeeper,依赖zookeepr保存元数据,依赖zookeeper进行服务发现。Controller大量使用Watch功能实现对集群的协调管理。如果此时,作为Controller的Broker节点宕掉了。那么zookeeper的临时节点/controller就会因为会话超时而自动删除。而监控这个节点的Broker就会收到通知而向ZooKeeper发出创建/controller节点的申请,一旦创建成功,那么创建成功的Broker节点就成为了新的Controller。

在这里插入图片描述
  有一种特殊的情况,就是Controller节点并没有宕掉,而是因为网络的抖动,不稳定,导致和ZooKeeper之间的会话超时,那么此时,整个Kafka集群就会认为之前的Controller已经下线(退出)从而选举出新的Controller,而之前的Controller的网络又恢复了,以为自己还是Controller了,继续管理整个集群,那么此时,整个Kafka集群就有两个controller进行管理,那么其他的broker就懵了,不知道听谁的了,这种情况,我们称之为脑裂现象,为了解决这个问题,Kafka通过一个任期(epoch:纪元)的概念来解决,也就是说,每一个Broker当选Controller时,会告诉当前Broker是第几任Controller,一旦重新选举时,这个任期会自动增1,那么不同任期的Controller的epoch值是不同的,那么旧的controller一旦发现集群中有新任controller的时候,那么它就会完成退出操作(清空缓存,中断和broker的连接,并重新加载最新的缓存),让自己重新变成一个普通的Broker

二、生产消息

在这里插入图片描述
  整个生产者客户端由两个线程协调运行,这两个线程分别为主线程和Sender线程(发送线程)。在主线程中由KafkaProducer创建消息,然后通过可能的拦截器、序列化器和分区器的作用之后缓存到消息累加器(RecordAccumulator,也称为消息收集器)中。Sender线程负责从RecordAccumulator中获取消息并发送到kafka中。

  RecordAccumulator主要是用来缓存消息以便Sender线程可以批量发送,进而减少网络传输的资源消耗以提升性能。RecordAccumulator缓存的大小可以通过生产者客户端参数buffer.memory配置,默认值为32MB

我们采用Java代码通过Kafka Producer API的方式生产数据

2.1、创建待发送数据

  在kafka中传递的数据我们称之为消息(message)或记录(record),所以Kafka发送数据前,需要将待发送的数据封装为指定的数据模型ProducerRecord(其实就是一个类):

在这里插入图片描述
在这里插入图片描述

  相关属性必须在构建数据模型时指定,其中主题和value的值是必须要传递的。如果配置中开启了自动创建主题,那么Topic主题可以不存在。value就是我们需要真正传递的数据了,而Key可以用于数据的分区定位

2.2、创建生产者对象,发送数据

  根据前面提供的配置信息创建生产者对象,通过这个生产者对象向Kafka服务器节点发送数据,而具体的发送是由生产者对象创建时,内部构建的多个组件实现的,多个组件的关系有点类似于生产者消费者模式。

在这里插入图片描述
1、数据生产者
  生产者对象,用于对我们的数据进行必要的转换和处理,将处理后的数据放入到数据收集器中,类似于生产者消费者模式下的生产者。这里我们简单介绍一下内部的数据转换处理:

  • 如果配置拦截器栈,那么将数据进行拦截处理。某一个拦截器出现异常并不会影响后续的拦截器处理。
  • 因为发送的数据为key-value数据,所以需要根据配置信息中的序列化对象对数据中key和value分别进行序列化处理。
  • 计算数据所发送的分区位置。
  • 将数据追加到数据收集器中。

2、数据收集器
  用于收集,转换我们产生的数据,类似于生产者消费者模式下的缓冲区。为了优化数据的传输,Kafka并不是生产一条数据就向Broker发送一条数据,而是通过合并单条消息,进行批量(批次)发送,提高吞吐量,减少带宽消耗。

  • 默认情况下,一个发送批次(下图中的ProducerBatch)的数据容量为16K(不是指一个批次的最大容量就是16K,而是指超过16K后当前批次就不接收新数据了,每个批次是要保证数据完整性的),这个可以通过参数batch.size进行改善。
  • 批次是和分区进行绑定的。也就是说发往同一个分区的数据会进行合并,形成一个批次。
  • 如果当前批次能容纳数据,那么直接将数据追加到批次中即可,如果不能容纳数据,那么会产生新的批次放入到当前分区的批次队列中,这个队列使用的是Java的双端队列Deque。旧的批次关闭不再接收新的数据,等待发送

3、数据发送器(Sender线程)
  线程对象,用于从收集器对象中获取数据,向服务节点发送。类似于生产者消费者模式下的消费者。因为是线程对象,所以启动后会不断轮询获取数据收集器中已经关闭的批次数据。对批次进行整合后再发送到Broker节点中。

  • 对网络连接来说,生产者客户端是与具体的broker节点建立的连接,也就是向具体的broker节点发送消息,而并不关心消息属于哪一个分区;而对于KafkaProducer的应用逻辑而言,我们只关注向哪个分区中发送哪些消息,所以在这里需要做一个应用逻辑层到网络IO层面的转换:即将原本<分区,Deque<ProducerBatch>>保存形式转变为<node,List<ProducerBatch>>)。
  • 将组合后的<节点,List<ProducerBatch>>的数据封装成客户端请求发送到网络客户端对象的缓冲区,由网络客户端对象通过网络发送给Broker节点。
  • Broker节点获取客户端请求,并根据请求键进行后续的数据处理:向分区中增加数据。

1.数据量超过批次大小阈值(可通过参数配置),2.数据在缓冲区停留时间超过时间阈值(可通过参数配置),满足任一条件sender线程即发数据到kafka服务器。

2.3、发送回调

  Kafka发送数据时,可以同时传递回调对象(Callback)用于对数据的发送结果进行对应处理,具体代码实现采用匿名类或Lambda表达式都可以。

public class KafkaProducerASynTest {public static void main(String[] args) {Map<String, Object> configMap = new HashMap<>();configMap.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");configMap.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");configMap.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");KafkaProducer<String, String> producer = new KafkaProducer<>(configMap);// TODO 循环生产数据for ( int i = 0; i < 10; i++ ) {// TODO 创建数据ProducerRecord<String, String> record = new ProducerRecord<String, String>("test", "key" + i, "value" + i);// TODO 发送数据producer.send(record, new Callback() {// TODO 回调对象public void onCompletion(RecordMetadata recordMetadata, Exception e) {// TODO 当数据发送成功后,会回调此方法System.out.println("数据发送成功:" + recordMetadata.timestamp());}});}producer.close();}
}

结果:
在这里插入图片描述

2.3.1、异步发送

  Kafka发送数据时,底层的实现类似于生产者消费者模式。对应的,底层会由主线程代码作为生产者向缓冲区中放数据,而数据发送线程会从缓冲区中获取数据进行发送。Broker接收到数据后进行后续处理。

  如果Kafka通过主线程代码将一条数据放入到缓冲区后,无需等待数据的后续发送过程,就直接发送一下条数据的场合,我们就称之为异步发送

在这里插入图片描述

public class KafkaProducerASynTest {public static void main(String[] args) {Map<String, Object> configMap = new HashMap<>();configMap.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");configMap.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");configMap.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");KafkaProducer<String, String> producer = new KafkaProducer<>(configMap);// TODO 循环生产数据for ( int i = 0; i < 10; i++ ) {// TODO 创建数据ProducerRecord<String, String> record = new ProducerRecord<String, String>("test", "key" + i, "value" + i);// TODO 发送数据producer.send(record, new Callback() {// TODO 回调对象public void onCompletion(RecordMetadata recordMetadata, Exception e) {// TODO 当数据发送成功后,会回调此方法System.out.println("数据发送成功:" + recordMetadata.timestamp());}});// TODO 发送当前数据System.out.println("发送数据");}producer.close();}
}

结果:
在这里插入图片描述
在这里插入图片描述

2.3.2、同步发送

  Kafka发送数据时,底层的实现类似于生产者消费者模式。对应的,底层会由主线程代码作为生产者向缓冲区中放数据,而数据发送线程会从缓冲区中获取数据进行发送。Broker接收到数据后进行后续处理。

  如果Kafka通过主线程代码将一条数据放入到缓冲区后,需等待数据的后续发送操作的应答状态,才能发送一下条数据的场合,我们就称之为同步发送。所以这里的所谓同步,就是生产数据的线程需要等待发送线程的应答(响应)结果。

  采用的是JDK1.5增加的JUC并发编程的Future接口的get方法实现的。实际上send()方法就是异步的,send()方法返回的Future对象可以使调用方稍后获得发送结果。下面的示例中在执行send方法后直接调用get方法来阻塞等待kafka的响应,直到消息发送成功,或者发生异常。

在这里插入图片描述

public class KafkaProducerASynTest {public static void main(String[] args) throws Exception {Map<String, Object> configMap = new HashMap<>();configMap.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");configMap.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");configMap.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");KafkaProducer<String, String> producer = new KafkaProducer<>(configMap);// TODO 循环生产数据for ( int i = 0; i < 10; i++ ) {// TODO 创建数据ProducerRecord<String, String> record = new ProducerRecord<String, String>("test", "key" + i, "value" + i);// TODO 发送数据producer.send(record, new Callback() {// TODO 回调对象public void onCompletion(RecordMetadata recordMetadata, Exception e) {// TODO 当数据发送成功后,会回调此方法System.out.println("数据发送成功:" + recordMetadata.timestamp());}}).get();// TODO 发送当前数据System.out.println("发送数据");}producer.close();}
}

结果:
在这里插入图片描述

  通常,一个kafkaProducer不会只负责发送单条消息,更多的是发送多条消息,在发送完这些消息之后,需要调用kafkaProducer的close()方法来回收资源。close()方法会阻塞等待之前所有的发送请求完成后再关闭kafkaProducer。

 
  消息在通过send()方法发往broker的过程中,有可能经过拦截器(Interceptor)、序列化器(Serializer)和分区器(Partitioner)的一系列作用之后才能被真正的发往broker。拦截器一般不是必需的,而序列化器是必需的。消息经过序列化后就需要确定它发往的分区,如果消息ProducerRecord中指定了partition字段,那么就不需要分区器的作用,因为partition代表的就是所要发往的分区号。

2.4、拦截器

  生产者API在数据准备好发送给Kafka服务器之前,允许我们对生产的数据进行统一的处理,比如校验、整合数据等等。这些处理我们是可以通过Kafka提供的拦截器完成。因为拦截器不是生产者必须配置的功能,所以大家可以根据实际的情况自行选择使用。

  但是要注意,这里的拦截器是可以配置多个的。执行时,会按照声明顺序执行完一个后,再执行下一个。并且某一个拦截器如果出现异常,只会跳出当前拦截器逻辑,并不会影响后续拦截器的处理。所以开发时,需要将拦截器的这种处理方法考虑进去。也可以通过实现ProducerInterceptor接口来自定义拦截器。

在这里插入图片描述

2.5、序列化器

  生产者需要使用序列化器(Serializer)把对象转换为字节数组才能通过网络发送给kafka,而在对侧,消费者需要使用反序列化器(Desirializer)把从kafka获得的字节数组转换为相应的对象。在上面的代码例子中,为了方便,消息的key和value都使用了字符串,对应程序中的序列化器也使用了客户端自带的StringSerializer,除了使用String类型的序列化器,还有其他类型的序列化器。当然也可以通过实现Serializer接口来自定义序列化器。

2.6、分区器

  Kafka中Topic是对数据逻辑上的分类,而Partition才是数据真正存储的物理位置。所以在生产数据时,如果只是指定Topic的名称,其实Kafka是不知道将数据发送到哪一个Broker节点的。我们可以在构建数据传递Topic参数的同时,也可以指定数据存储的分区编号。

在这里插入图片描述
  指定分区传递数据是没有任何问题的。Kafka会进行基本简单的校验,比如是否为空,是否小于0之类的,但是你的分区是否存在就无法判断了,所以需要从Kafka中获取集群元数据信息,此时会因为长时间获取不到元数据信息而出现超时异常。所以如果不能确定分区编号范围的情况,不指定分区还是一个不错的选择。

  如果不指定分区,Kafka会根据集群元数据中的主题分区来通过算法来计算分区编号并设定,当然还可以通过实现Partitioner来自定义分区器,kafka分区的选择流程如下:

  1. 如果指定了分区,直接使用。
  2. 如果指定了自己的分区器,通过分区器计算分区编号,如果有效,直接使用。
  3. 如果指定了数据Key,且使用Key选择分区的场合,采用murmur2非加密散列算法(类似于hash)计算数据Key序列化后的值的散列值,然后对主题分区数量模运算取余,最后的结果就是分区编号。
  4. 如果未指定数据Key,或不使用Key选择分区,那么Kafka会采用优化后的粘性分区策略进行分区选择。

2.7、消息可靠性

  对于生产者发送的数据,我们有的时候是不关心数据是否已经发送成功的,我们只要发送就可以了。在这种场景中,消息可能会因为某些故障或问题导致丢失,我们将这种情况称之为消息不可靠。虽然消息数据可能会丢失,但是在某些需要高吞吐,低可靠的系统场景中,这种方式也是可以接受的,甚至是必须的。

  但是在更多的场景中,我们是需要确定数据是否已经发送成功了且Kafka正确接收到数据的,也就是要保证数据不丢失,这就是所谓的消息可靠性保证。

  而这个确定的过程一般是通过Kafka给我们返回的响应确认结果(Acknowledgement)来决定的,这里的响应确认结果我们也可以简称为ACK应答。根据场景,Kafka提供了3种应答处理,可以通过配置对象进行配置。acks是生产者客户端中一个非常重要的参数,它涉及消息的可靠性和吞吐量之间的权衡。acks参数有3种类型的值(都是字符串类型)。

在这里插入图片描述

2.7.1、acks = 0

  当生产数据时,生产者对象将数据通过网络客户端将数据发送到网络数据流中的时候,Kafka就对当前的数据请求进行了响应(确认应答),如果是同步发送数据,此时就可以发送下一条数据了。如果是异步发送数据,回调方法就会被触发。

在这里插入图片描述
  通过图形,明显可以看出,这种应答方式,数据已经通过网络给Kafka发送了,但这其实并不能保证Kafka能正确地接收到数据,在传输过程中如果网络出现了问题,那么数据就丢失了。也就是说这种应答确认的方式,数据的可靠性是无法保证的。不过相反,因为无需等待Kafka服务节点的确认,通信效率倒是比较高的,也就是系统吞吐量会非常高。

2.7.2、acks = 1(默认)

  当生产数据时,Kafka Leader副本将数据接收到并写入到了日志文件(保存到磁盘)后,就会对当前的数据请求进行响应(确认应答),如果是同步发送数据,此时就可以发送下一条数据了。如果是异步发送数据,回调方法就会被触发。

在这里插入图片描述
  通过图形,可以看出,这种应答方式,数据已经存储到了分区Leader副本中,那么数据相对来讲就比较安全了,也就是可靠性比较高。之所以说相对来讲比较安全,就是因为现在只有一个节点存储了数据,而数据并没有来得及进行备份到follower副本,那么一旦当前存储数据的broker节点出现了故障,数据也依然会丢失。

2.7.3、acks = -1或all

  当生产数据时,Kafka Leader副本和Follower副本都已经将数据接收到并写入到了日志文件后,再对当前的数据请求进行响应(确认应答),如果是同步发送数据,此时就可以发送下一条数据了。如果是异步发送数据,回调方法就会被触发。

在这里插入图片描述
  通过图形,可以看出,这种应答方式,数据已经同时存储到了分区Leader副本和follower副本中,那么数据已经非常安全了,可靠性也是最高的。此时,如果Leader副本出现了故障,那么follower副本能够开始起作用,因为数据已经存储了,所以数据不会丢失。

不过这里需要注意,如果假设我们的分区有5个follower副本,编号为1,2,3,4,5

在这里插入图片描述
  但是此时只有3个副本处于和Leader副本之间处于数据同步状态,那么此时分区就存在一个同步副本列表,我们简称为ISR。此时,Kafka只要保证ISR中所有的4个副本接收到了数据,就可以对数据请求进行响应了。无需5个副本全部收到数据。

2.8、部分重要的生产者参数

2.8.1、linger.ms

  这个参数用来指定生产者发送ProducerBatch之前等待更多消息(ProducerRecord)加入ProducerBatch的时间,默认值为0。生产者客户端会在ProducerBatch被填满等待时间超过linger.ms值时发送出去。增大这个参数的值会增加消息的延迟,但是同事能提升一定的吞吐量。

还有很多其他重要的生产者参数,可以参考相关帖子或书籍。

2.9、Producer总结

  对于KafkaProducer而言,它是线程安全的,我们可以在多线程的环境中复用它,但是对于消费者客户端KafkaConsumer而言,它是非线程安全的,因为它具备了状态,具体怎么使用可以参见后面的文章。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/18787.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

STL C++ CookBook 7:迭代器简论

目录 兼容的迭代器 迭代器概念 使用迭代器来填充STL的容器 将一些序列算法包装成可迭代的 构建 zip 迭代器适配器 兼容的迭代器 迭代器是 STL 中的一个基本概念。迭代器使用 C 指针的语义实现&#xff0c;使用相同的递增、递减和解引用运算符。 大多数 C/C 程序员都熟悉指…

【Python图解】 常量与变量及基本运算

【图解python】 常量与变量及基本运算 Python 常量与变量教程 可能你现在会产生疑惑&#xff0c;代码中的 print 代表什么意义&#xff1f;括号又是什么作用&#xff1f;为什么 hello world 外面有个双引号&#xff1f;没关系&#xff0c;下面我们就来了解 Python 语法的奥秘…

「漏洞复现」全新优客API接口管理系统 index/doc SQL注入漏洞

0x01 免责声明 请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;作者不为此承担任何责任。工具来自网络&#xff0c;安全性自测&#xff0c;如有侵权请联系删…

java ssm 健康医馆管理系统 中医馆管理 健康平台 药店 源码jsp

一、项目简介 本项目是一套基于SSM的健康医馆管理系统&#xff0c;主要针对计算机相关专业的和需要项目实战练习的Java学习者。 包含&#xff1a;项目源码、数据库脚本、软件工具等。 项目都经过严格调试&#xff0c;确保可以运行&#xff01; 二、技术实现 ​后端技术&#x…

Python - jieba库的使用

文章目录 jieba库概述jieba分词的三种模式jieba库的安装 jieba分词的原理jieba库常用函数实例 : 文本词频统计 jieba库概述 jieba是优秀的中文分词第三方库 中文文本需要通过分词获得单个的词语jieba是优秀的中文分词第三方库&#xff0c;需要额外安装jieba库提供三种分词模式…

一个简单的图像分类项目(九)并行训练的学习:多GPU的DP(DataParallel数据并行)

将电脑装成Ubuntu、Windows双系统&#xff0c;并在Ubuntu上继续学习。 在现代深度学习中&#xff0c;多主机多GPU训练已经变得非常常见&#xff0c;尤其是对于大规模模型和数据集。最简单和早期的并行计算比如NVIDIA的SLI&#xff0c;从NVIDIA 450系列驱动开始&#xf…

本草智选:中药实验管理的智能推荐

摘要 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理信息系统的实施在技术上已逐步成熟。本文介绍了中药实验管理系统的开发全过程。通过分析中药实验管理系统管理的不足&#xff0c;创建了一个计算机管理中药实验管理系统的方案。文章介绍了中药实验管理系统的系…

凸优化理论和多模态基础模型研究

文章目录 摘要Abstract1. 拉格朗日对偶问题1.1 弱对偶问题1.2 强对偶问题&#xff08;P*D*&#xff09;1.3 KKT条件 2. 论文阅读3. 总结 摘要 本周从拉格朗日对偶理论出发&#xff0c;系统学习了优化问题中凸函数、强对偶条件以及 KKT 条件的应用&#xff0c;并将其与机器学习…

nginx+vconsole调试网页在vivo浏览器无法显示图片问题

一、问题描述 昨天测试小伙伴提了一个特殊的bug&#xff0c;在安卓vivo手机浏览器上访问网页&#xff0c;网页的图片按钮和录播图一闪而过后便消失不见&#xff1a; 二、问题排查 项目采用Nuxt框架&#xff0c;排查的方向大致如下&#xff1a; 1.其它手机浏览器是否有复现&am…

草本追踪:中药实验管理的数字化转型

2相关技术 2.1 MYSQL数据库 MySQL是一个真正的多用户、多线程SQL数据库服务器。 是基于SQL的客户/服务器模式的关系数据库管理系统&#xff0c;它的有点有有功能强大、使用简单、管理方便、安全可靠性高、运行速度快、多线程、跨平台性、完全网络化、稳定性等&#xff0c;非常…

【Linux】虚拟地址空间,页表,物理内存

目录 进程地址空间&#xff0c;页表&#xff0c;物理内存 什么叫作地址空间&#xff1f; 如何理解地址空间的区域划分&#xff1f; 地址空间结构体 为什么要有地址空间&#xff1f; 页表 cr3寄存器 权限标记位 位置标记位 其他 每个存储单元是一个字节&#xff0c;一…

集群聊天服务器(3)muduo网络库

目录 基于muduo的客户端服务器编程 muduo只能装在linux中&#xff0c;依赖boost库 客户端并不需要高并发 基于muduo的客户端服务器编程 支持epoll线程池&#xff0c;muduo封装了线程池 而且还有完善的日志系统 使用muduo库代码非常固定&#xff0c;基本就只有chatserver的类名…

【Python刷题】最少拐弯路线问题

题目描述 洛谷P1649 一、题目理解 首先&#xff0c;我们来看一下这道题目的要求。题目给定了一个 NN&#xff08;1≤N≤100&#xff09; 的方格&#xff0c;方格中的每个格子有不同的状态&#xff0c;用 . 表示可以行走的格子&#xff0c;x 表示不能行走的格子&#xff0c;…

在windows系统里面部署 Redis

在windows中下载安装REdis 1.下载mis 地址添加链接描述 然后直接下载安装然后点击你的库 2.然后选择好之后选择好路径就行了。 然后我们点击这个cli.exe文件然后双击打开输入 在命令框里输入&#xff1a; 如果显示的和图片显示的一样&#xff0c;则证明你已经在本地部署好了…

NTP博客

使用nmtui命令修改IP&#xff1a; 注意&#xff1a; 修改之后&#xff0c;要激活&#xff1a; nmcli connection up ens160 1、软件安装 #设置当前时区 [rootlocalhost ~]# timedatectl set-timezone Asia/Shanghai 1.1.配置国内阿里yum源 [rootredhat ~]# cd /etc/yum.r…

《Large-scale Multi-modal Pre-trained Models: A Comprehensive Survey》中文校对版

文章汉化系列目录 文章目录 文章汉化系列目录摘要引言2 背景2.1 传统深度学习2.2 自然语言处理中的预训练2.3 计算机视觉中的预训练2.4 音频与语音中的预训练 3 多模态预训练3.1 任务定义与关键挑战3.2 MM-PTM的优势3.3 预训练数据3.4 预训练目标3.5 预训练网络架构3.5.1 自注意…

从源码角度分析JDK动态代理

文章目录 前言一、JDK动态代理二、动态代理的生成三、invoke的运行时调用总结 前言 本篇从源码的角度&#xff0c;对JDK动态代理的实现&#xff0c;工作原理做简要分析。 一、JDK动态代理 JDK动态代理是运行时动态代理的一种实现&#xff0c;相比较于CGLIB &#xff0c;目标对象…

操作系统——计算机系统概述——1.5操作系统引导(开机过程)

操作系统引导&#xff1a; A.CPU从一个特定主存地址开始&#xff0c;取指令&#xff0c;执行ROM中的引导程序&#xff08;先进行硬件自检&#xff0c;再开机&#xff09; B.将磁盘的第一块——主引导记录读入内存&#xff0c;执行磁盘引导程序&#xff0c;扫描分区表 C.从活动分…

推荐一本python学习书:《编程不难》

推荐理由 全面&#xff1a;把零基础Python编程、可视化、数学、数据、机器学习&#xff0c;融合在一起&#xff0c;循循渐进。 开源&#xff1a;PDF、Python代码、Jupyter文档&#xff0c;在github直接免费下&#xff01; 真实&#xff1a;提供大量真实场景下的数据&#xff…

数据结构与算法分析模拟试题及答案5

模拟试题&#xff08;五&#xff09; 一、单项选择题&#xff08;每小题 2 分&#xff0c;共20分&#xff09; &#xff08;1&#xff09;队列的特点是&#xff08;   &#xff09;。 A&#xff09;先进后出 B&#xff09;先进先出 C&#xff09;任意位置进出 D&#xff0…