C++:哈希拓展-位图

目录

一.问题导入

二.什么是位图?

2.1如何确定目标数在哪个比特位?

2.2如何存放高低位

2.3位图模拟代码实现

2.3.1如何标记一个数

2.3.2如何重置标记

2.3.3如何检查一个数是否被标记

整体代码实现

标准库的Bitset

库中的bitset的缺陷

简单应用


一.问题导入

这道题直接使用遍历,效率太差,不推荐使用;

第二种方法就是先排序+二分查找:肯呢个有些人会觉得,排序的代价太大了;其实不然,我们只需要排序一次那么接下来的查找就好办了;
对于二分查找,效率是O(logn),根据2^10=1024,那2^30的数量级就是10^9,就已经上升到亿了,2^32大约就是40亿;所以我们使用二分在40亿个数中查找一个数最多只需要查找32次就可以了,效率是相当客观的;

那么问题来了:我们排序的数据是在内存中的,但是我们能在内存中直接开出40亿个整形吗?来计算一下;

答案肯定是不行的;1GB=1024MB=1024*1024KB=1024*1024*1024B(B是字节),10^9量级大约等于10亿多字节;一个整形4字节,40亿个整形就是16*10^9字节,相当于是16亿G;

所以40亿个整数是无法直接放到内存中的,只能放到硬件文件中,而二分查找只能堆内存中的数组中的有序数据进行查找;

针对上述的空间问题,我们可以使用位图思想来实现;

二.什么是位图?

我们都知道一个字节占8个比特位,每个比特位上储存的是二进制数0和1,那我们就可以在每个比特位上根据1或0,来判断是否存在一个数;

2.1如何确定目标数在哪个比特位?

这个问题其实并不难,我们采用无符号整形构造位图,一个整形占4字节,也就是32个比特位,那这样一个整形中我就可以标记32个数;

那如果我要标记35呢?

第一个整形可以标记的数是0-31,第二个整形可以标记的数是31-63......通过观察我们可以得到结论:35在第二个整形中,在第4个比特位也就是下标为3;

结论:N在第N/32个整形中,所在比特位的下标为N%32;

2.2如何存放高低位

我们都知道二进制数排列是从低位向高位的,而按位左移也是从低位向高位的;

同样的在位图中每个整形的存储方式也是如此;那么我们可以推断数值在位图中存储形态;

我们来分析一下:

首先,我要标记一个数1,这个数在第1个整形中,所占比特位下标为1;然后我们在看看2是在哪里标记的;2同样在第一个整形中,比特位下标为2,我们来看比特位高低位分布,2是不是在1的左边;

在一个数的比特位中,高位数的值大于低位数的值; 所以左边存储的是较大的数;右边存储的是较小的数;

2.3位图模拟代码实现

我们先来把整体框架来实现一下:

template <size_t N>//非类型模板参数N:一共有多少个数
class bitset
{
public:bitset():_bs(ceil(N/32.0))//根据模版的N开整形空间{}void set(int n);//标记数void reset(int n);//重置标记bool test(int n);//检查该数是否标记private:vector<int>_bs;  //使用变长数组模拟
};

2.3.1如何标记一个数

现在如果我们要标记一个数,那我们需要先确定这个数在第几个整形中和第几个比特位;i是所在整形的下标,j是所在比特位的下标:

i=N/32;

j=N%32;

我们通常是将1左移j位然后或上_bs[i];

template <size_t N>//非类型模板参数N:一共有多少个数
class bitset
{
public:bitset():_bs(ceil(N/32.0))//根据模版的N开整形空间:(ceil是向上取整){}void set(int n)
{int i = n / 32;//找到所在整形的下标int j = n % 32;//找到所在整形中对应的比特位_bs[i] |= 1 << j;
}void reset(int n);bool test(int n);//检查该数是否标记private:vector<int>_bs;  //使用变长数组模拟
};

2.3.2如何重置标记

我们只需要将该比特位&上~(1<<j)即可;

template <size_t N>//非类型模板参数N:一共有多少个数
class bitset
{
public:bitset():_bs(ceil(N/32.0))//根据模版的N开整形空间:(ceil是向上取整){}void set(int n)
{int i = n / 32;//找到所在整形的下标int j = n % 32;//找到所在整形中对应的比特位_bs[i] |= 1 << j;
}void reset(int n)
{int i = n / 32;//找到所在整形的下标int j = n % 32;//找到所在整形中对应的比特位_bs[i] &= ~(1 << j);  
}bool test(int n);//检查该数是否标记private:vector<int>_bs;  //使用变长数组模拟
};

2.3.3如何检查一个数是否被标记

判断一个比特位是否是1:将该比特位&1,如果是1那就是1,如果是0那就是0;

template <size_t N>//非类型模板参数N:一共有多少个数
class bitset
{
public:bitset():_bs(ceil(N/32.0))//根据模版的N开整形空间:(ceil是向上取整){}void set(int n)
{int i = n / 32;//找到所在整形的下标int j = n % 32;//找到所在整形中对应的比特位_bs[i] |= 1 << j;
}void reset(int n)
{int i = n / 32;//找到所在整形的下标int j = n % 32;//找到所在整形中对应的比特位_bs[i] &= ~(1 << j);  
}bool test(int n){int i = n / 32;//找到所在整形的下标int j = n % 32;//找到所在整形中对应的比特位return _bs[i] & (1 << j); }private:vector<int>_bs;  //使用变长数组模拟
};

整体代码实现


#include<iostream>
#include<vector>
#include<Bitset>   
using namespace std;
namespace bit {template <size_t T>class bitset{public:bitset():_bs(ceil(T/32.0)){}void set(int n){int i = n / 32;//找到所在整形的下标int j = n % 32;//找到所在整形中对应的比特位_bs[i] |= 1 << j;}void reset(int n){int i = n / 32;//找到所在整形的下标int j = n % 32;//找到所在整形中对应的比特位_bs[i] &= ~(1 << j);  }bool test(int n){int i = n / 32;//找到所在整形的下标int j = n % 32;//找到所在整形中对应的比特位return _bs[i] & (1 << j); }private:vector<int>_bs;  };
}

标准库的Bitset

 其中最核心的就是set和reset;其他的了解即可;

库中的bitset的缺陷

我们模拟实现的bitset底层是使用的vector,而vector的空间来自堆上;这就意味着,我们开一个比较大的空间时bitset的大小是不变的;一直都是vector<int>的大小;

我们来验证一下:

结果一直都是32;为什么是32呢;根据我们在前面Vector的模拟实现可以得知,32是多个指针所占的内存空间;

那标准库中的bitset是什么样的呢?

标准库中的bitset底层是使用静态数组实现的;那么这就意味着空间是在堆栈上开辟的;其实堆栈是很小的,所以当我们开出一块很大的空间的时候容易出现问题;

所以当数据量十分巨大的时候我们尽量使用自己构造的bitset;

另外就是当我们使用我们的bitset<-1>bs时,是可以开出很大的空间的;


但是库中的bitset不支持此操作;

简单应用

这道题是有100亿个数,并且要统计次数,有效的次数就是0,1,2,3;正好占2个比特位,可以使用两个比特位来表示出现的次数;

这道题就是要是使用两个位图协同进行标记;

具体思路:封装两个位图->twoset,底层是bitset<1e10>bs1,bitset<1e10>bs2;分别代表n出现次数的两个比特位;

代码实现:

#include<iostream>
#include<vector>
#include<Bitset>   
using namespace std;
namespace bit 
{template <size_t N>    class bitset{public:bitset():_bs(ceil(N/32.0))      {}void set(int n){int i = n / 32;//找到所在整形的下标int j = n % 32;//找到所在整形中对应的比特位_bs[i] |= 1 << j;}void reset(int n){int i = n / 32;//找到所在整形的下标int j = n % 32;//找到所在整形中对应的比特位_bs[i] &= ~(1 << j);  }bool test(int n){int i = n / 32;//找到所在整形的下标int j = n % 32;//找到所在整形中对应的比特位return _bs[i] & (1 << j); }private:vector<int>_bs;  };template <size_t T>class twoset{public:twoset() = default;void set(size_t n){//00->01if (!bs1.test(n) && !bs2.test(n)){bs2.set(n);}else if (!bs1.test(n) && bs2.test(n))//01->10{bs1.set(n);bs2.reset(n);}else//10->11{bs2.set(n);}}int get_count(int n){return bs1.test(n)*2 + bs2.test(n);}private:bitset<T>bs1;    bitset<T>bs2;     };}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/18691.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

GCP : Memcache backed by Cloud Datastore

Memcache backed by Cloud Datastore 的用途主要体现在以下几个方面&#xff1a; 提高性能和可扩展性&#xff1a; Memcache 是一个高性能的分布式内存对象缓存系统&#xff0c;通常用于缓存数据库查询等操作&#xff0c;以减轻数据库负载&#xff0c;加快动态Web应用的响应速度…

【Python】问题解决:yaml文件加载得到字符串而不是字典

问题描述 最近需要使用python处理yaml文件&#xff0c;但使用过程中发现只能输出字符串的格式&#xff0c;而不是想要的字典格式。 基本使用 在python中想要读写yaml文件&#xff0c;可以安装使用第三方包pyyaml来实现&#xff0c;首先安装一下&#xff1a; pip install pyya…

时钟之Canvas+JS版

写在前面 上一篇介绍使用CSSJS方式实现&#xff0c;但元素太过单一。此篇将以HTML5的canvas标签结合JS来实现。 HTML代码 <canvas id"clock" width"300" height"300"></canvas> JS代码 var canvas null; var ctx null; var int…

shell脚本_创建执行与变量的定义与使用

PS:前言本章节讲解使用的系统为linux2024.1&#xff0c;基于Debian的Linux发行版。 一、什么是shell脚本&#xff1f; 1. 定义&#xff1a; 2. 主要特点&#xff1a; 3. shell脚本的基本结构 4. Shebang 二、创建执行 1.脚本的创建 2. 脚本的执行 2.1.chmod 2.2. 使用…

CSP/信奥赛C++语法基础刷题训练(11):洛谷P5743:猴子吃桃

CSP/信奥赛C语法基础刷题训练&#xff08;11&#xff09;&#xff1a;洛谷P5743&#xff1a;猴子吃桃 题目描述 一只小猴买了若干个桃子。第一天他刚好吃了这些桃子的一半&#xff0c;又贪嘴多吃了一个&#xff1b;接下来的每一天它都会吃剩余的桃子的一半外加一个。第 n n n…

C++11(四)---可变参数模板

文章目录 可变参数模板 可变参数模板 参数包代表多个类型和参数 // Args是一个模板参数包&#xff0c;args是一个函数形参参数包 // 声明一个参数包Args...args&#xff0c;这个参数包中可以包含0到任意个模板参数。 template <class ...Args> void ShowList(Args... arg…

【qt】控件1

1.控件使能&#xff08;enabled&#xff09; QPushbutton*stnew QPushbutton(this);//定义一个按钮 st->setEnabled(false);//按钮设置不能使用当设置该控件不能使用的话&#xff0c;对应控件的子控件也不能使用 通过isEnabled()函数可以查看对应控件状态 演示&#xff1…

昇思MindSpore第二课---Transformer

1. Transformer的概念 Transformer是一种基于注意力机制结构的神经网络&#xff0c;其主要的作用就是用于处理机器翻译、语言建模以及文本生成等自然语言的处理。 比如人类在做一篇阅读理解的时候&#xff0c;我们的注意力可能主要集中在我们所阅读的这一行内容。而机器也是如此…

【Go】-bufio库解读

目录 Reader和Writer接口 bufio.Reader/Writer 小结 其他函数-Peek、fill Reader小结 Writer Scanner结构体 缓冲区对于网络数据读写的重要性 Reader和Writer接口 在net/http包生成的Conn 接口的实例中有两个方法叫做Read和Write接口 type Conn interface {Read(b []b…

mac 0S中虚拟机分辨率高怎么办

在VMware Fusion安装的Windows虚拟机有时候会遇到下图的问题&#xff0c;分辨率很高、桌面和任务栏的图标都很小&#xff0c;没办法正常使用。 解决方法&#xff1a; 点击工具栏中的扳手图标&#xff0c;打开设置。 打开系统设置中的“显示器”。 取消勾选“使用Retina全分辨率…

找不到d3dx9_43.dll怎么解决,d3dx9_43.dll缺失的七种解决方法

​在计算机游戏领域&#xff0c;遇到“找不到d3dx9_43.dll”错误信息是一个相当普遍的现象。这一问题不仅影响玩家的游戏体验&#xff0c;还可能导致游戏无法启动或运行不稳定。本文旨在深入解析这一问题的原因&#xff0c;并提供有效的解决方法&#xff0c;帮助广大游戏玩家轻…

论文《基于现实迷宫地形的电脑鼠设计》深度分析(四)——现实迷宫算法

论文概述 《基于现实迷宫地形的电脑鼠设计 》是由吴润强、庹忠曜、刘文杰、项璟晨、孙科学等人于2023年发表的一篇优秀期刊论文。其针对现阶段电脑鼠计算量庞大且不适用于现实迷宫地形的问题&#xff0c;特基于超声波测距与传统迷宫算法原理&#xff0c;设计出一款可在现实…

ARM(安谋) China处理器

0 Preface/Foreword 0.1 参考博客 Cortex-M23/M33与STAR-MC1星辰处理器 ARM China&#xff0c;2018年4月established&#xff0c;独立运行。 1 处理器类型 1.1 周易AIPU 1.2 STAR-MC1&#xff08;星辰处理器&#xff09; STAT-MC1&#xff0c;主要为满足AIOT应用性能、功…

Iview DatePicker 仅允许选择当前月份及以后的月份

iview DatePicker之前月份禁用且下月可用 html代码 <DatePicker type"month" :options"options4" :value"dialogForm.estimatedStartTimeWithCreate" on-change"monthTime($event, loadDateStart)" placeholder"请选择时间&q…

Redis 内存管理

参考&#xff1a;面试官&#xff1a;为什么 Redis 不立刻删除已经过期的数据&#xff1f; 目录 1.Redis 给缓存数据设置过期时间有什么用&#xff1f; 2.Redis 是如何判断数据是否过期的呢&#xff1f; 3.Redis 过期 key 删除策略了解么&#xff1f; 4.大量 key 集中过期怎…

【IC每日一题:SVA简介】

IC每日一题&#xff1a;SVA简介 1 断言概念1.1 断言优势&#xff1b;1.2 断言类型1.2.1 立即断言1.2.2 并行断言1.2.3 并发断言Demo 2 SVA语法2.1 蕴含操作符&#xff1a;|-> 和 ->2.1.1 蕴含操作符 |>2.1.2 蕴含操作符|-> 2.2 延时操作符2.2.1 ##n 操作符 2.3 重复…

深度学习之One Stage目标检测算法2

我们将对单次目标检测器&#xff08;包括SSD系列和YOLO系列等算法&#xff09;进行综述。我们将分析FPN以理解多尺度特征图如何提高准确率&#xff0c;特别是小目标的检测&#xff0c;其在单次检测器中的检测效果通常很差。然后我们将分析Focal loss和RetinaNet&#xff0c;看看…

【MySQL】优化方向+表连接

目录 数据库表连接 表的关系与外键 数据库设计 规范化 反规范化 事务一致性 表优化 索引优化 表结构优化 查询优化 数据库表连接 表的关系与外键 表之间的关系 常见表关系总结 一对一关系&#xff1a;每一条记录在表A中对应表B的唯一一条记录&#xff0c;反之也是&a…

SHELL笔记(概念+变量)

shell 概念 Shell 是一个命令行解释器&#xff0c;它充当用户与操作系统内核之间的桥梁。用户在 Shell 环境下输入各种命令&#xff0c;Shell 负责接收并分析这些命令&#xff0c;然后将其转换为内核能够理解和执行的系统调用。通过这种方式&#xff0c;用户可以便捷地操作计算…

统信UOS开发环境支持Golang

UOS为Golang开发者提供了各种编辑器和工具链的支持,助力开发者实现高质量应用的开发。 文章目录 一、环境部署Golang开发环境安装二、代码示例Golang开发案例三、常见问题1. 包导入错误2. 系统资源限制一、环境部署 Golang开发环境安装 golang开发环境安装步骤如下: 1)安装…