无人机检测车辆——多目标检测

目录

YOLOv3(You Only Look Once version 3)简介

YOLOv3 的主要特点

YOLOv3 的结构

1. 特征提取网络(Backbone)

2. 检测头(Head)

3. 输出层

YOLOv3 损失函数

YOLOv3 的优势

YOLOv3 的应用

YOLOv3 的局限性

实现思路

1. 加载模型和配置文件:

2. 视频读取:

3. 初始化跟踪器:

4. YOLOv3目标检测:

5. 目标跟踪:

6. 结果展示:

7. 资源释放:

整体代码

效果图

总结



YOLOv3(You Only Look Once version 3)简介

        YOLOv3 是一种目标检测模型,它是 YOLO(You Only Look Once)系列模型的第三个版本,主要改进了之前版本的精度和速度。YOLOv3 可以在单次推理中同时识别图像中的多个目标,它通过回归问题将目标检测任务转化为一个单一的回归问题,从而实现了非常高的检测速度。YOLOv3 在速度和精度之间提供了良好的平衡,成为了工业和学术界广泛使用的目标检测模型。

        YOLOv3 由 Joseph Redmon 和 Santosh Divvala 等人提出,主要的创新包括:

  1. 更好的多尺度检测:通过使用三个不同尺度的特征图来检测不同尺寸的目标。
  2. 更精确的特征提取网络:YOLOv3 使用了一个新的特征提取网络(Darknet-53),相比于之前的 YOLOv2 使用的 Darknet-19,它更深更强,能够提取更多的图像特征。
  3. 改进的损失函数:YOLOv3 对损失函数进行了改进,加入了对边界框位置、置信度、类别概率等因素的多方面考虑,使得模型能够更准确地进行目标检测。

YOLOv3 的主要特点

  1. 实时性和高效率:YOLOv3 可以实时进行目标检测,尤其适合需要实时反馈的应用场景,比如自动驾驶、监控摄像头等。

  2. 端到端训练和推理:YOLOv3 是一个端到端的模型,不需要额外的区域提议(region proposals)阶段。通过单一的神经网络结构,YOLOv3 可以在一次前向推理中同时完成目标的定位和分类。

  3. 高精度和高速度:虽然 YOLOv3 的推理速度非常快,但它并没有牺牲精度。YOLOv3 在 COCO 数据集上的表现优于许多其他实时目标检测模型(如 SSD 和 Faster R-CNN)。

  4. 支持多类别和多尺度检测:YOLOv3 支持大规模的类别检测(COCO 数据集中的 80 类物体),并且能够检测大小不一的目标物体,尤其是在小物体的检测上有显著提高。

  5. 使用 Leaky ReLU 激活函数:YOLOv3 使用了 Leaky ReLU 替代传统的 ReLU 激活函数,能够避免 ReLU 在某些情况下出现死神经元(dead neurons)问题。

  6. 检测层次结构:YOLOv3 使用三种不同大小的特征图来进行目标检测,从而更好地处理小物体、大物体的检测任务。其采用了类似 FPN(Feature Pyramid Networks)的结构,能够有效利用不同尺度的特征进行多尺度目标检测。


YOLOv3 的结构

        YOLOv3 的整体架构分为两个主要部分:特征提取网络(Backbone)检测头(Head)

1. 特征提取网络(Backbone)

        YOLOv3 使用 Darknet-53 作为其特征提取网络。Darknet-53 是一个具有 53 层的卷积神经网络,相比于 YOLOv2 使用的 Darknet-19,Darknet-53 更深且具备更强的特征提取能力。Darknet-53 由残差块组成,可以更有效地提取图像中的低级和高级特征。

2. 检测头(Head)

        YOLOv3 的检测头负责从特征图中提取目标的边界框坐标、置信度以及类别信息。YOLOv3 采用了三个不同尺度的特征图来进行检测:一个用于检测大物体,一个用于中等物体,另一个用于小物体。这些特征图分别来自网络中不同深度的卷积层。

3. 输出层

        YOLOv3 的输出是一个 3D 张量,包含了边界框的位置(x, y, w, h)、置信度和类别概率。输出的每个单元表示一个预测框的信息。

  • 每个预测框会有 4 个坐标值(x, y, w, h),表示边界框的位置和尺寸。
  • 每个框还会有一个置信度值,表示该框内包含目标的置信度。
  • 最后,每个框还会包含与每个类别相关的类别概率分布。

YOLOv3 损失函数

YOLOv3 使用了一个多任务损失函数,结合了位置损失、置信度损失和类别损失:

  1. 位置损失(Localization Loss):该损失用于优化边界框的预测精度,通常使用均方误差(MSE)来计算。

  2. 置信度损失(Confidence Loss):该损失用于衡量每个预测框内是否包含目标物体,越接近 1 说明预测越准确,目标物体越确定。YOLOv3 对所有预测框都计算了置信度损失。

  3. 类别损失(Classification Loss):该损失用于计算每个框的类别预测误差,通常使用交叉熵损失来计算。


YOLOv3 的优势

  • 实时性强:相较于许多传统的目标检测方法(如 Faster R-CNN),YOLOv3 的检测速度更快,适合实时应用。

  • 精度高:YOLOv3 在大型数据集(如 COCO、PASCAL VOC)上的精度较高,尤其是在小物体检测方面有所改进。

  • 多尺度检测:YOLOv3 的多尺度检测策略使得它能够在不同大小的物体上都有较好的表现。


YOLOv3 的应用

YOLOv3 被广泛应用于以下领域:

  1. 自动驾驶:YOLOv3 能够实时识别道路上的车辆、行人、交通标志等物体,对于自动驾驶系统的目标检测至关重要。

  2. 视频监控:YOLOv3 可以用来实时分析监控视频,识别入侵者、车辆或其他目标。

  3. 工业检测:在工业制造过程中,YOLOv3 可用于缺陷检测、零件识别等。

  4. 无人机目标检测:YOLOv3 适用于无人机上的实时物体识别,能够进行高效的目标追踪和监控。


YOLOv3 的局限性

尽管 YOLOv3 在速度和精度上都表现出色,但仍然存在一些局限性:

  1. 小物体检测问题:虽然 YOLOv3 引入了多尺度特征图来改进小物体检测,但对于极小的物体,它的检测精度仍然不如其他更精细的检测模型(如 Faster R-CNN 或 RetinaNet)。

  2. 精度与速度的平衡:YOLOv3 主要专注于速度,因此在极高精度的需求下,可能不如一些其他的目标检测模型。


实现思路

1. 加载模型和配置文件

  • 代码首先加载了COCO数据集中的类别名称(coco.names)和YOLOv3的配置文件(yolov3.cfg)以及权重文件(yolov3.weights)。这些文件是YOLOv3模型进行物体检测所需要的。
  • net = cv2.dnn.readNet() 用来加载YOLO模型,getLayerNames()getUnconnectedOutLayers() 获取模型的输出层名称。

2. 视频读取

  • 使用 cv2.VideoCapture() 打开一个视频文件,这里假设视频文件名为 test1.mp4,你可以更换成其他的视频文件路径。
  • 每帧视频将会被读取,并传入后续的目标检测和跟踪部分。

3. 初始化跟踪器

  • 使用 cv2.TrackerCSRT_create() 创建CSRT(Channel and Spatial Reliability Tracking)跟踪器。CSRT是一个高效的多目标跟踪算法,适用于动态物体(如车辆)跟踪。
  • tracker.init(frame, bbox) 初始化跟踪器,bbox 是目标的边界框坐标(x, y, w, h),代表车辆在视频中的位置。

4. YOLOv3目标检测

  • yolo_detection(frame) 是目标检测函数,首先将图像转换成YOLO模型所需的输入格式(blobFromImage())。然后,将图像传入YOLO模型进行前向传播,获得每个检测框的信息(如位置、类别、置信度)。
  • 根据YOLO的检测结果,代码筛选出置信度大于0.5且类别为“车”、“巴士”和“卡车”的目标,这些目标会被添加到跟踪列表中。

5. 目标跟踪

  • 初始化跟踪器后,开始对视频中的目标进行跟踪。在 while 循环中,程序不断读取视频帧并更新所有的跟踪器。
  • 每次更新时,通过 tracker.update(frame) 获取新的目标位置。如果跟踪成功,更新目标的边界框,并绘制在视频帧上;如果跟踪失败,则显示“Tracking failure”提示。

6. 结果展示

  • 每一帧被处理后,将通过 cv2.imshow() 显示出来。如果按下键盘上的 'q' 键,程序会退出循环并关闭窗口。
  • 绘制的跟踪框使用绿色((0, 255, 0)),并在框上方显示“Vehicle ID”来标识每个目标。

7. 资源释放

  • 在程序结束时,cap.release() 释放视频文件,cv2.destroyAllWindows() 关闭所有OpenCV的窗口。


整体代码

import cv2
import numpy as np# 加载类别名称
with open("../needFiles/coco.names", "r") as f:classes = [line.strip() for line in f.readlines()]# 加载YOLOv3配置文件和权重文件
net = cv2.dnn.readNet("../needFiles/yolov3.weights", "../needFiles/yolov3.cfg")# 获取输出层名称
layer_names = net.getLayerNames()
output_layers = [layer_names[i - 1] for i in net.getUnconnectedOutLayers()]# 打开视频文件(这里假设无人机视频文件为input_video.mp4)
cap = cv2.VideoCapture("./videos/test1.mp4")# 初始化变量
trackers = []  # 用于存储多个跟踪器
bboxes = []  # 存储所有目标的边界框
frame_count = 0# 车辆类别的ID(以COCO数据集为例)
vehicle_classes = ['car', 'bus', 'truck']  # 需要跟踪的车辆类别
vehicle_class_ids = [2, 5, 7]  # 对应的类别ID# 使用跟踪算法
def init_tracker(frame, bbox):# 使用CSRT跟踪器(适合动态物体)tracker = cv2.TrackerCSRT_create()tracker.init(frame, bbox)return tracker# YOLOv3检测
def yolo_detection(frame):blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False)net.setInput(blob)outs = net.forward(output_layers)class_ids = []confidences = []boxes = []height, width, _ = frame.shapefor out in outs:for detection in out:scores = detection[5:]class_id = np.argmax(scores)confidence = scores[class_id]if confidence > 0.5:  # 置信度阈值center_x = int(detection[0] * width)center_y = int(detection[1] * height)w = int(detection[2] * width)h = int(detection[3] * height)x = int(center_x - w / 2)y = int(center_y - h / 2)# 如果检测到的是车辆类别,则将目标添加到跟踪列表if class_id in vehicle_class_ids:boxes.append([x, y, w, h])confidences.append(float(confidence))class_ids.append(class_id)# 使用非极大值抑制(NMS)过滤多余的框indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)return boxes, confidences, class_ids, indexes# 选择视频中的一帧图像进行目标选择
ret, frame = cap.read()
if not ret:print("无法读取视频文件!")cap.release()exit()# 目标检测并初始化目标跟踪
boxes, confidences, class_ids, indexes = yolo_detection(frame)
for i in range(len(boxes)):if i in indexes:x, y, w, h = boxes[i]bbox = (x, y, w, h)  # 目标框坐标tracker = init_tracker(frame, bbox)trackers.append(tracker)bboxes.append(bbox)# 跟踪目标
while True:ret, frame = cap.read()if not ret:break# 调整帧大小以适应显示器screen_width = 800  # 设置显示器宽度screen_height = int(frame.shape[0] * (screen_width / frame.shape[1]))frame_resized = cv2.resize(frame, (screen_width, screen_height))# 更新所有的跟踪器for i, tracker in enumerate(trackers):success, bbox = tracker.update(frame)# 绘制跟踪框if success:x, y, w, h = [int(v) for v in bbox]cv2.rectangle(frame_resized, (x, y), (x + w, y + h), (0, 255, 0), 2)cv2.putText(frame_resized, f"Vehicle ID: {i+1}", (x, y - 10),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)else:cv2.putText(frame_resized, "Tracking failure", (100, 80), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)# 显示图像cv2.imshow("WenJGo", frame_resized)# 按 'q' 键退出if cv2.waitKey(1) & 0xFF == ord('q'):break# 释放资源
cap.release()
cv2.destroyAllWindows()

效果图

总结

        YOLOv3 是一款强大的实时目标检测模型,它在精度和速度之间提供了很好的平衡。通过引入更深的网络架构、多个尺度的检测和改进的损失函数,YOLOv3 在多种应用场景中都取得了优秀的表现。对于需要快速处理并识别图像中多目标的任务,YOLOv3 是一个非常优秀的选择。但是我觉得我现在还用的不好。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/16591.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

集群搭建高可用

contos7.9 部署3节点 hadoop3.4 高可用集群 contos7.9 部署3节点 hadoop3.4 高可用集群环境信息Hadoop与Zookeeper的版本对应关系服务器角色分配使用端口服务器配置配置免密登录服务器配置初始化 init_server.sh配置主机名映射所有节点配置 hosts文件 hadoop 安装环境配置下载安…

网络IP地址会经常换吗?深入解析与实操指南

在互联网的生态系统中,IP地址(Internet Protocol Address)是每台连接设备的唯一标识符,它在网络通信中起着至关重要的作用。然而,不少用户观察到自己的IP地址有时会发生变化,这引发了诸多疑问。本文旨在详细…

AI测试的主要研究方向介绍

随着AI技术的不断进步和应用场景的日益广泛,如何确保人工智能系统的可靠性和安全性, 变得日益重要。人工智能测试作为保障AI系统质量的关键环节,也随着AI技术不断向前发展。本文将介绍当前AI测试的主要研究方向,以期为大家提供一个…

Python3中str和bytes

参考文章:浅析Python3中的bytes和str类型 - Chown-Jane-Y - 博客园 Python 3最重要的新特性之一是对字符串和二进制数据流做了明确的区分。文本总是Unicode,由str类型表示,二进制数据则由bytes类型表示。Python 3不会以任意隐式的方式混用str…

比特币前景再度不明,剧烈波动性恐即将回归

比特币市场降温,波动性增加 自特朗普赢得美国总统大选以来,比特币市场的投机狂热有所降温,现货和衍生品市场的活跃度开始减弱。比特币在上周五跌破87000美元,较之前创下的历史高点低了约6500美元。这一变化受到美联储主席鲍威尔讲…

node对接ChatGpt的流式输出的配置

node对接ChatGpt的流式输出的配置 首先看一下效果 将数据用流的方式返回给客户端,这种技术需求在传统的管理项目中不多见,但是在媒体或者有实时消息等功能上就会用到,这个知识点对于前端还是很重要的。 即时你不写服务端,但是服务端如果给你这样的接口,你也得知道怎么去使用联…

esp32c3安装micropython环境

esp32c3竟然支持micropython环境,真的太让人高兴了。主要是python开发比较友好,开发速度要快于C和C, 可以用来快速创意验证。 下载 首先到官网:MicroPython - Python for microcontrollers 点击“download”进入下载页面&#…

Linux运维工程师推荐学习的开发语言

前言:会开发的运维和不会开发的运维可以说是两个世界的运维。 个人推荐python和go,前者可以做自动化运维,后者可以深挖k8s;最近就不先演示运维服务技术的部署和架构搭建了,在深挖自动化运维,为了让现在的工…

新手小白学习docker第八弹------实现MySQL主从复制搭建

目录 0 引言1 实操1.1 新建主服务器容器1.2 书写配置文件1.3 重启master实例1.4 进入mysql-master容器master容器实例内创建数据同步用户 1.5 新建从服务器容器1.6 书写配置文件1.7 重启slave实例1.8 查看主从同步状态1.9 进入mysql-slave容器1.9.1 配置主从复制1.9.2 查看主从…

我谈二值形态学基本运算——腐蚀、膨胀、开运算、闭运算

Gonzalez从集合角度定义膨胀和腐蚀,不易理解。 Through these definitions, you can interpret dilation and erosion as sliding neighborhood operations analogous to convolution (or spatial filtering). 禹晶、肖创柏、廖庆敏《数字图像处理(面向…

力扣题目解析--合并两个链表

题目 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1: 输入:l1 [1,2,4], l2 [1,3,4] 输出:[1,1,2,3,4,4]示例 2: 输入:l1 [], l2 [] 输出&#xff…

基于yolov8、yolov5的鸟类分类系统(含UI界面、训练好的模型、Python代码、数据集)

项目介绍 项目中所用到的算法模型和数据集等信息如下: 算法模型:     yolov8、yolov8 SE注意力机制 或 yolov5、yolov5 SE注意力机制 , 直接提供最少两个训练好的模型。模型十分重要,因为有些同学的电脑没有 GPU&#xff0…

css:浮动

网页的本质上就是摆放盒子,把盒子摆到相应的位置上 css提供了三种传统的布局方式: 普通流(标准流):标签按默认方式排列,最基本的布局方式 浮动 定位 实际开发中,一个网页基本包含了三种这种布局…

Essential Cell Biology--Fifth Edition--Chapter one (6)

1.1.4.4 Internal Membranes Create Intracellular Compartments with Different Functions [细胞膜形成具有不同功能的细胞内隔室] 细胞核、线粒体和叶绿体并不是真核细胞中唯一的膜包围细胞器。细胞质中含有大量的[ a profusion of]其他细胞器,这些细胞器被单层膜…

量子奇异值阈值算法

特征值分解只适用于方阵,如何扩展到任意形状的矩阵呢?奇异值分解能够解决此问题。量子奇异值阈值算法在奇异值分解的基础上将小的特征值设置为0,从而将小的特征值及其对应的特征向量去掉,进而降低矩阵的秩,达到降维的目…

Python_爬虫3_Requests库网络爬虫实战(5个实例)

目录 实例1:京东商品页面的爬取 实例2:亚马逊商品页面的爬取 实例3:百度360搜索关键词提交 实例4:网络图片的爬取和存储 实例5:IP地址归地的自动查询 实例1:京东商品页面的爬取 import requests url …

黑马微项目

目录 1 飞机票 2 生成一个五位数验证码 3 数字加密 4 数字解密 5 抢红包 6 双色球系统 7 用户登录 8 金额转换 9 手机号屏蔽 10 罗马数字转换 11 调整字符串 12 初级学生管理系统(学生数据的管理) 13 学生管理系统(用户的相关操…

基于lighthouse搭建私有网盘Cloudreve【开源应用实践】

基于lighthouse搭建私有网盘Cloudreve【超高性价比】 今天给大家分享一款私人网盘神器,既能存放你的文件文档,也能替你保存那不可告人的秘密~ 香菇今天将手把手教给大家如何在腾讯云轻量应用服务器上搭建个人专属网盘 1. 既爱又恨的网盘存储 很多小伙伴…

博物馆实景复刻:开启沉浸式文化体验的新篇章

随着数字化技术的飞速发展,博物馆的展览形式正在经历一场前所未有的变革。3数字博物馆和3D线上展览,这种创新的展览方式不仅打破了时间和空间的限制,更让文化遗产的保护与传承迈上了一个新的台阶。 本文将深入探讨博物馆实景复刻虚拟展厅的兴…

java中设计模式的使用(持续更新中)

概述 设计模式的目的:编写软件过程中,程序员面临着来自耦合性,内聚性以及可维护性,可扩展性,重用性,灵活性等多方面的挑战,设计模式是为了让程序(软件),具有…