基于yolov8、yolov5的鸟类分类系统(含UI界面、训练好的模型、Python代码、数据集)

项目介绍

项目中所用到的算法模型和数据集等信息如下:

算法模型:
    yolov8yolov8 + SE注意力机制yolov5yolov5 + SE注意力机制直接提供最少两个训练好的模型。模型十分重要,因为有些同学的电脑没有 GPU,无法自行训练。

数据集:
    网上下载的数据集,格式都已转好,可直接使用。

界面:
    PyQt5

以上是本篇博客的简单说明,添加注意力机制可作为模型的创新点

在这里插入图片描述


摘要鸟类分类系统在现代生态研究和生物多样性监测中具有重要意义,不仅有助于提高物种识别的效率,还能在鸟类保护和栖息地管理中发挥关键作用。本文介绍了基于YOLOv8深度学习框架的一个鸟类分类模型,该模型使用了大量不同种类的鸟类图像进行训练,能够精准识别不同光照、角度和背景下的鸟类种类。我们还开发了一款带有UI界面的鸟类分类系统,支持实时检测鸟类的种类,并通过图形界面直观地展示分类结果。系统采用PythonPyQt5开发,支持图片、视频及摄像头输入的识别,并能保存分类结果以供后续分析。
此外,本文附带了完整的Python代码和详细的使用指南,方便读者快速上手,进行鸟类分类系统的搭建与测试。完整的代码资源及使用方法请见文章末尾。

前言

   鸟类分类技术在生态研究、物种保护和生物多样性监测等领域中具有重要意义,能够提高物种识别的效率并确保生态环境的健康。在现代生态监测中,快速且精准地分类鸟类,能够帮助研究人员和保护工作者更好地识别和保护不同种类的鸟类,从而减少物种灭绝风险,优化保护资源的分配,特别是在自动化监测系统中,精准的分类是其高效运行的基础。同时,鸟类分类系统还能为生态保护提供数据支持,实现更好的物种监控和保护管理。

   鸟类分类技术已经在多个生态监测场景中得到广泛应用,如鸟类监测、栖息地保护、生态研究、物种分布预测等。依赖高效的分类系统,研究人员和保护组织可以实时监测鸟类种类,并根据分类结果调整保护策略,从而提高整体保护效率并确保鸟类种群的健康和多样性。

   在现代智能生态管理环境中,鸟类分类系统可以与其他智能管理系统结合使用,如自动化监控设备、生态数据平台和物种监测系统,形成完整的智能生态解决方案,帮助研究人员和保护组织更好地掌握鸟类种群状况。在大规模生态监测和复杂环境中,系统能够快速识别和分类多种鸟类种类,为科学决策提供精准的数据支持。

   本文通过收集与鸟类分类相关的数据和图像,博主利用YOLOv8、YOLOv5等目标检测技术,结合Python与PyQt5,开发出了一款界面简洁的鸟类分类系统。该系统支持图片、视频及摄像头输入的识别,并能够保存分类结果,为用户提供直观便捷的检测体验。

目录

  • 项目介绍
  • 前言
  • 功能展示:
  • 🌟 一、环境安装
  • 🌟 二、数据集介绍
  • 🌟 三、深度学习算法介绍
    • 1. yolov8相关介绍
    • 2. yolov5相关介绍
  • 🌟 四、模型训练步骤
  • 🌟 五、模型评估步骤
  • 🌟 六、训练结果
  • 结束语 🌟 🌟🌟🌟

功能展示:

部分核心功能如下:

  • 功能1: 支持单张图片识别
  • 功能2: 支持遍历文件夹识别
  • 功能3: 支持识别视频文件
  • 功能4: 支持摄像头识别
  • 功能5: 支持结果文件导出(xls格式)
  • 功能6: 支持切换检测到的目标查看

更多的其他功能以及界面样式可以通过下方视频演示查看。

基于深度学习的鸟类分类检测系统(yolov8)


🌟 一、环境安装

文档中有详细的环境安装指南,包括 Python、PyCharm、CUDA、Torch 等库的安装步骤,所有版本均已适配。你可以根据文档或视频教程一步步完成安装。

经过三年多的经验积累,我整理了在帮助他人安装环境过程中常见的问题和解决方法,并汇总到这份文档中。无论你是使用 GPU 版还是 CPU 版,都能找到相关的安装细节和说明。文档会定期更新,以确保最新的环境配置和优化,供大家参考。

文档截图如下:

在这里插入图片描述


🌟 二、数据集介绍

数据集已经分好 train、val、test文件夹,也提供转好的yolo格式的标注文件,可以直接使用。
11种鸟类,600张数据集。这个数据集本来有200个种类,因为太多了训练效果就会降低,所以就选了11个种类。

在这里插入图片描述

在这里插入图片描述


🌟 三、深度学习算法介绍

本系统集成了多个不同的算法版本和界面版本,以下是对这些版本的概述:

算法版本方面,系统提供了多种深度学习算法和传统图像处理技术,用户可以选择最合适的算法进行任务处理。此外,各算法版本经过严格的测试和优化,以提供更高的准确率和效率。

界面版本方面,系统设计了多种用户界面风格,可以选择简约、直观的界面,快速上手进行操作;也可以选择功能丰富的专业界面,满足复杂任务的需求。界面设计注重用户体验,确保用户在操作过程中能够方便地访问各种功能。

此外,系统还支持实时更新和扩展,可以根随时添加新的算法模块或界面选项。这种灵活性不仅提高了系统的适用性,也为未来的技术发展预留了空间。

总之,本系统通过多个算法和界面版本的组合,提供了丰富的选择和强大的功能。

下面是对包含到的算法的大概介绍:

1. yolov8相关介绍

YOLOv8 是当前深度学习领域内的一个SOTA(State-Of-The-Art)模型,凭借其前代版本的技术积累,再次引领了目标检测算法的发展方向。与其前辈不同,YOLOv8在模型结构和计算方式上都做了创新性调整,旨在实现更高效的计算和更灵活的应用场景适应能力。全新的骨干网络设计,结合Anchor-Free 检测头,让模型在面对不同输入尺寸、不同目标尺度时的表现更加出色,极大提升了性能和准确性

此外,YOLOv8 的另一个重要进步在于它采用了全新的损失函数,使得训练过程更加稳定和高效。无论是在传统的CPU平台上运行,还是在更强大的GPU平台上进行加速,YOLOv8 都能够适应不同硬件资源的场景,确保在各种场合下保持高效的推理速度精确的检测能力

不过,值得注意的是,ultralytics 这一开发团队并没有直接将其开源库命名为 YOLOv8,而是采用了ultralytics的品牌名来命名整个项目。这并非单纯的命名策略,而是反映了其定位的重大变化。ultralytics 将这个库不仅视为一个算法框架,而非仅仅一个 YOLO 版本的延续。其设计目标之一是打造一个能够适应不同任务的算法平台,无论是目标检测、分类、分割,还是姿态估计,都能够在这个框架中被高效地支持。

这也意味着,未来的ultralytics 开源库将不仅限于 YOLO 系列,它的可扩展性为用户提供了更大的可能性。无论是使用非 YOLO 系列模型,还是面对不同应用领域的特定需求,ultralytics都提供了灵活且高效的解决方案

总的来说,ultralytics 开源库 的优势可以归纳为以下几个要点:

  • 融合当前最前沿的深度学习技术,让用户可以轻松实现复杂的计算任务。

  • 具有极高的扩展性,未来将不仅支持 YOLO 系列,还会支持更多非 YOLO 的算法,适用于广泛的任务场景。

如此一来,ultralytics 不仅能够帮助开发者在算法研究工程应用上取得突破,更能推动未来智能视觉领域的进一步发展。

在这里插入图片描述

网络结构如下:
在这里插入图片描述

2. yolov5相关介绍

YOLOV5有YOLOv5n,YOLOv5s,YOLOv5m,YOLOV5l、YOLO5x五个版本。这个模型的结构基本一样,不同的是deth_multiole模型深度和width_multiole模型宽度这两个参数。就和我们买衣服的尺码大小排序一样,YOLOV5n网络是YOLOV5系列中深度最小,特征图的宽度最小的网络。其他的三种都是在此基础上不断加深,不断加宽。不过最常用的一般都是yolov5s模型。
在这里插入图片描述

  本系统采用了基于深度学习的目标检测算法YOLOv5,该算法是YOLO系列算法的较新版本,相比于YOLOv3和YOLOv4,YOLOv5在检测精度和速度上都有很大的提升。YOLOv5算法的核心思想是将目标检测问题转化为一个回归问题。此外,YOLOv5还引入了一种称为SPP(Spatial Pyramid Pooling)的特征提取方法,这种方法可以在不增加计算量的情况下,有效地提取多尺度特征,提高检测性能。

  在YOLOv5中,首先将输入图像通过骨干网络进行特征提取,得到一系列特征图。然后,通过对这些特征图进行处理,将其转化为一组检测框和相应的类别概率分数,即每个检测框所属的物体类别以及该物体的置信度。YOLOv5中的特征提取网络使用CSPNet(Cross Stage Partial Network)结构,它将输入特征图分为两部分,一部分通过一系列卷积层进行处理,另一部分直接进行下采样,最后将这两部分特征图进行融合。这种设计使得网络具有更强的非线性表达能力,可以更好地处理目标检测任务中的复杂背景和多样化物体。

在这里插入图片描述

  
YOLOv5中,每个检测框通过其左上角坐标(x, y)、宽度(w)、高度(h)以及置信度confidence)来表示。此外,YOLOv5对于每个检测框还会预测C个类别的概率得分,每个类别的概率得分总和为1。这意味着每个检测框最终可以被表示为一个维度为(C+5)的向量,包括类别概率、位置和置信度信息。

在训练过程中,YOLOv5使用了交叉熵损失函数来优化模型,该损失函数由定位损失置信度损失分类损失三个部分组成。YOLOv5还采用了Focal LossIoU Loss等优化方法,以缓解正负样本不平衡目标尺寸变化等问题。这些优化不仅提高了模型的准确性,还改善了在不同尺寸目标下的表现。

从网络结构来看,YOLOv5分为四个主要部分:Input(输入)、Backbone(骨干网络)、Neck(颈部结构)和Prediction(预测)。其中,Input部分负责将数据引入网络,采用了Mosaic数据增强技术,能够通过随机裁剪和拼接输入图片,进一步提升网络的泛化能力。

Backbone部分是YOLOv5提取图像特征的关键模块,其特征提取能力直接影响了整个模型的性能表现。相比前代YOLOv4,YOLOv5在Backbone中引入了Focus结构。Focus结构通过切片操作将图片的宽度(W)高度(H)信息转移到通道空间中,从而实现了2倍的下采样操作,同时保证了不丢失关键信息。


🌟 四、模型训练步骤

  1. 使用pycharm打开代码,找到train.py打开,示例截图如下:
    在这里插入图片描述

  2. 修改 model_yaml 的值,根据自己的实际情况修改,想要训练 yolov8s模型 就 修改为 model_yaml = yaml_yolov8s, 训练 添加SE注意力机制的模型就修改为 model_yaml = yaml_yolov8_SE

  3. 修改data_path 数据集路径,根据自己的数据集位置修改。我提供的数据集都是在traindata文件夹下,路径设置到这一级即可。
    示例:

    data_path = r'D:\lg\BaiduSyncdisk\project\person_code\project_self\19_corn_disease\data\traindata'
    
  4. 修改 model.train()中的参数,按照自己的需求和电脑硬件的情况更改

    # 文档中对参数有详细的说明
    model.train(data=data_path,  # 数据集路径imgsz=300,  # 训练图片大小epochs=200,  # 训练的轮次batch=2,  # 训练batchworkers=0,  # 加载数据线程数device='0',  # 使用显卡optimizer='SGD',  # 优化器project='runs/train',  # 模型保存路径name=name,  # 模型保存命名)
    
  5. 修改完后,执行 train.py , 打开 train.py ,右键执行。
    在这里插入图片描述

  6. 出现如下类似的界面代表开始训练了
    在这里插入图片描述

  7. 训练完后的模型保存在runs/train文件夹下
    在这里插入图片描述


🌟 五、模型评估步骤

  1. 打开val.py文件,如下图所示:
    在这里插入图片描述

  2. 修改 model_pt 的值,是自己想要评估的模型路径

  3. 修改 data_path 数据集路径的值,自己的数据集路径,我提供的数据集都是在traindata文件夹下,路径设置到这一级即可。

  4. 修改 model.val() 中的参数,按照自己的需求和电脑硬件的情况更改

    model.val(data=data_path,           # 数据集路径imgsz=300,                # 图片大小,要和训练时一样batch=4,                  # batchworkers=0,                # 加载数据线程数conf=0.001,               # 设置检测的最小置信度阈值。置信度低于此阈值的检测将被丢弃。iou=0.6,                  # 设置非最大抑制 (NMS) 的交叉重叠 (IoU) 阈值。有助于减少重复检测。device='0',               # 使用显卡project='runs/val',       # 保存路径name='exp',               # 保存命名)
    
  5. 修改完后,即可执行程序,出现如下截图,代表成功
    在这里插入图片描述

  6. 评估后的文件全部保存在在 runs/val/exp... 文件夹下
    在这里插入图片描述

  7. 具体的准确度等指标可以在在 终端上看到
    在这里插入图片描述


🌟 六、训练结果

我们每次训练后,会在 run/train 文件夹下出现一系列的文件,如下图所示:
在这里插入图片描述

   如果大家对于上面生成的这些内容(confusion_matrix.png、results.png等)不清楚是什么意思,可以在我的文档中查看这些指标的具体含义,示例截图如下:

在这里插入图片描述


结束语 🌟 🌟🌟🌟

   下面图片是对每个文件夹作用的介绍:(纯粹是秀一秀 俺的 代码结构是否清晰, 注释是否详细,如果大家觉得有更好的方法,可以下方留言,一定再精进一下。)

在这里插入图片描述

其实用yolo算法做系统非常的简单,但是博客文字有限,如果有介绍不明白的地方,也可以看一下下面的视频,也许会更容易理解。

视频就是记录自己如何进行环境安装、以及如何进行模型训练和模型评估的, 具体视频列表可以看下方图片箭头位置。当然如果自己不做这个项目,做其他的也可以参考一下,毕竟方法都是通用的。
在这里插入图片描述

项目完整文件下载请见演示与介绍视频的视频简介部分进行获取➷➷➷

演示与介绍视频: 【基于深度学习的鸟类分类检测系统(yolov8)】

由于博主的能力有限,文中提到的方法虽经过实验验证,但难免存在一些不足之处。为不断提升内容的质量与准确性,欢迎您指出任何错误和疏漏。这不仅将帮助我在下次更新时更加完善和严谨,也能让其他读者受益。您的反馈对我至关重要,能够推动我进一步完善相关内容。

此外,如果您有更优秀的实现方案或独到的见解,也非常欢迎分享。这将为大家提供更多思路与选择,促进我们共同的成长与进步。期待您的宝贵建议与经验交流,非常感谢您的支持!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/16573.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

css:浮动

网页的本质上就是摆放盒子,把盒子摆到相应的位置上 css提供了三种传统的布局方式: 普通流(标准流):标签按默认方式排列,最基本的布局方式 浮动 定位 实际开发中,一个网页基本包含了三种这种布局…

Essential Cell Biology--Fifth Edition--Chapter one (6)

1.1.4.4 Internal Membranes Create Intracellular Compartments with Different Functions [细胞膜形成具有不同功能的细胞内隔室] 细胞核、线粒体和叶绿体并不是真核细胞中唯一的膜包围细胞器。细胞质中含有大量的[ a profusion of]其他细胞器,这些细胞器被单层膜…

量子奇异值阈值算法

特征值分解只适用于方阵,如何扩展到任意形状的矩阵呢?奇异值分解能够解决此问题。量子奇异值阈值算法在奇异值分解的基础上将小的特征值设置为0,从而将小的特征值及其对应的特征向量去掉,进而降低矩阵的秩,达到降维的目…

Python_爬虫3_Requests库网络爬虫实战(5个实例)

目录 实例1:京东商品页面的爬取 实例2:亚马逊商品页面的爬取 实例3:百度360搜索关键词提交 实例4:网络图片的爬取和存储 实例5:IP地址归地的自动查询 实例1:京东商品页面的爬取 import requests url …

黑马微项目

目录 1 飞机票 2 生成一个五位数验证码 3 数字加密 4 数字解密 5 抢红包 6 双色球系统 7 用户登录 8 金额转换 9 手机号屏蔽 10 罗马数字转换 11 调整字符串 12 初级学生管理系统(学生数据的管理) 13 学生管理系统(用户的相关操…

基于lighthouse搭建私有网盘Cloudreve【开源应用实践】

基于lighthouse搭建私有网盘Cloudreve【超高性价比】 今天给大家分享一款私人网盘神器,既能存放你的文件文档,也能替你保存那不可告人的秘密~ 香菇今天将手把手教给大家如何在腾讯云轻量应用服务器上搭建个人专属网盘 1. 既爱又恨的网盘存储 很多小伙伴…

博物馆实景复刻:开启沉浸式文化体验的新篇章

随着数字化技术的飞速发展,博物馆的展览形式正在经历一场前所未有的变革。3数字博物馆和3D线上展览,这种创新的展览方式不仅打破了时间和空间的限制,更让文化遗产的保护与传承迈上了一个新的台阶。 本文将深入探讨博物馆实景复刻虚拟展厅的兴…

java中设计模式的使用(持续更新中)

概述 设计模式的目的:编写软件过程中,程序员面临着来自耦合性,内聚性以及可维护性,可扩展性,重用性,灵活性等多方面的挑战,设计模式是为了让程序(软件),具有…

linux基础io重定向

文章目录 目录 文章目录 前言 一、函数的认识 1、认识close函数和dup2函数 1、close函数: ​编辑 2、write、read函数 1、write函数 2、read函数 二、重定向 1.引入函数dup2 ​编辑 2、输出重定向 3.输出重定向 三、myshell重定向 总结 前言 接上一篇,…

[STM32] 定时器应用之输出比较 (五)

文章目录 1.输出比较2.PWM 介绍3.配置PWM 1.输出比较 OC: 输出比较。 输出比较可以通过比较CNT与CCR寄存器值的关系,来对输出电平进行置1、置0或翻转的操作,用于输出一定频率和占空比的PWM波形。每个高级定时器和通用定时器都拥有4个输出比较通道高级定…

【计算机毕设】无查重 基于python豆瓣电影评论舆情数据可视化系统(完整系统源码+数据库+开发笔记+详细部署教程)✅

目录 【计算机毕设】无查重 基于python豆瓣电影数据可视化系统(完整系统源码数据库开发笔记详细部署教程)✅ 一、项目背景 二、项目目标 三、项目功能 四、开发技术介绍 五、数据库设计 六、项目展示 七、开发笔记 八、启动步骤文档 九、权威教…

后台管理系统窗体程序:个人中心

目录 个人中心的功能介绍: 1、进入页面 2、页面内的各种功能设计 (1)修改按钮 (2)页面的进入退出操作 一、网页设计 二、html代码 三、css代码 四、js代码 本次项目为后台管理系统,在本系统内的第七…

PLC如何支持GEM300标准?SECS/GEM通讯协议

1. 提供技术服务,保证户使用没问题 2. 支持市场所有的常规PLC 3. 支持常规组态软件,如wincc、组态王、组态屏等 4. 支持各类传感器,私有协议、modbus、web等 5. 无需二次开发,只需配置映射到已有的PLC地址 GEM300协议是为了满…

用 Google Sheets 表格增强 Tableau 数据分析的 3 种玩法

轻松实现文本翻译、网页数据抓取,甚至创建高级日期表来增强 Tableau 可视化效果! 作为一款强大的数据可视化工具,Tableau 的可视化能力毋庸置疑。然而,对于跟表格打交道的用户来说,它没有“创建表格”的功能&#xff0…

计算机网络 (3)计算机网络的性能

一、计算机网络性能指标 速率: 速率是计算机网络中最重要的性能指标之一,它指的是数据的传送速率,也称为数据率(Data Rate)或比特率(Bit Rate)。速率的单位是比特/秒(bit/s&#xff…

CAP与BASE分布式理论

CAP理论 C:Consistency 一致性:指强一致性,分布式系统中的所有节点在同一时刻具有同样的值、都是最新的数据副本,一致性保证了不管向哪台服务器写入数据,其他的服务器能实时同步数据 强一致性:写入数据的时…

【Java基础知识系列】之Java类的初始化顺序

前言 类的初始化顺序 简单场景 代码示例 public class Person {private String name initName();private String initName() {System.out.println("【父类】初始化实例变量name");return "【父类】史蒂夫";}private int age;private static int staticVa…

探索大规模语言模型(LLM)在心理健康护理领域中的应用与潜力

概述 心理健康是公共卫生最重要的领域之一。根据美国国家精神卫生研究所(NIMH)的数据,到 2021 年,22.8% 的美国成年人将患上某种形式的精神疾病。在全球范围内,精神疾病占非致命性疾病负担的 30%,并被世界…

解决 idea windows 设置maven离线模式之后,maven继续请求远程仓库

在内网开发的时候经常遇到没有办法来链接远程仓库的情况,这个时候需要设置maven的离线模式。 idea windows 设置maven离线模式之后,maven继续请求远程仓库 当设置完离线模式之后,有的时候执行maven的命令会报错,提示请求远程失败…

卷积神经网络 (CNN)

代码功能 网络结构: 卷积层: 两个卷积层,每个卷积层后接 ReLU 激活函数。 最大池化层用于降低维度。 全连接层: 使用一个隐藏层(128 个神经元)和一个输出层(10 类分类任务)。 数据集…