2013年国赛高教杯数学建模C题古塔的变形解题全过程文档及程序

2013年国赛高教杯数学建模

C题 古塔的变形

  由于长时间承受自重、气温、风力等各种作用,偶然还要受地震、飓风的影响,古塔会产生各种变形,诸如倾斜、弯曲、扭曲等。为保护古塔,文物部门需适时对古塔进行观测,了解各种变形量,以制定必要的保护措施。
  某古塔已有上千年历史,是我国重点保护文物。管理部门委托测绘公司先后于1986年7月、1996年8月、2009年3月和2011年3月对该塔进行了4次观测。
  请你们根据附件1提供的4次观测数据,讨论以下问题:
  1. 给出确定古塔各层中心位置的通用方法,并列表给出各次测量的古塔各层中心坐标。
  2. 分析该塔倾斜、弯曲、扭曲等变形情况。
  3. 分析该塔的变形趋势。

整体求解过程概述(摘要)

  本文要求根据测绘公司对古塔的4次测量数据,给出确定古塔各层中心位置的通用方法,并分析古塔的变形情况及其变形趋势。为了计算的精度,我们首先对各变形量进行了合理的数学定义,并对附录的缺失数据进行合理的赋值。
  对于问题一,我们通过最小二乘法拟合出观测点所在平面,再建立优化模型,在拟合平面上寻找到各观测点距离的平方和最小的点作为古塔该层的中心点。利用MATLAB编程求解,得到了每次观测古塔各层中心坐标的通用方法及各层的中心点坐标。
  对于问题二,我们将古塔的倾斜、弯曲和扭曲等变形情况,分别给予合理的数学描述。对于倾斜变形,我们定义了倾斜角α,即塔尖与底层中心的水平距离与塔高的比值;对于弯曲变形,我们定义了弯曲率K,即用中心点所拟合出的空间曲线的曲率来描述古塔各处弯曲率;对于扭曲变形,我们定义了相对扭曲度θ,利用坐标的旋转变换角度描述古塔的扭曲变形情况。利用空间曲线拟合、坐标变换等方法以及MATLAB程序,分别求出了三个变形刻画量的量化指标。
  对于问题三,我们考虑通过古塔的倾斜、弯曲及扭曲程度来分析古塔的变形趋势。由于数据量较少,我们建立灰色预测模型分析这三种变形因素的变化趋势,利用相应的MATLAB程序,得到了倾斜角、弯曲率以及相对扭曲度的预测函数和误差检验,验证了模型的可靠性,并继而分析古塔的变形趋势。
  本文巧妙地将各种变形量给予了合理的数学描述及模型,并运用最小二乘法、曲线投影拟合、坐标变换等数学方法实现了求解,并利用灰色预测对未来变形趋势进行了预测,具有较好的实用性和可推广性。

模型假设:

  1.由于中国古代建筑物多为对称图形,假设古塔是对称的。
  2.假设每次古塔的测量点选取是固定的。
  3.假设测量数据都是准确可靠的。
  4.假设古塔的变形只由倾斜、弯曲和扭曲变形造成,不考虑其他因素。

问题分析:

  问题一要求确定古塔各层中心位置的通用方法。根据建筑变形测量规范,在建筑物变形测量中,为更好地测量出建筑物变形程度的各个指标,我们假设每次测量应选取固定的测量点,且在同一层所选取的测量点在未变形前处于同一个水平面上。而经过对各层观测点三维散点图的绘制发现,各层的八个点近似对称地分布在一个平面上,只是因为年代久远发生变形导致了些许偏差。因此为了更准确地找出各层中心点,我们考虑先利用最小二乘法拟合出各层观测点所在的平面方程,再建立优化模型在该平面上寻找一点使其到各观测点距离的平方和最小,以此确立古塔各层中心坐标。

  问题二要求分析古塔的各种变形情况。根据《中华人民共和国行业标准建筑变形测量规范(JGJ8—2007)》知,变形是建筑的地基、基础、上部结构及其场地受各种作用力而产生的形状或位置变化现象。在本问中,我们主要分析古塔三种主要的变形情况:倾斜、弯曲、扭曲。对于倾斜变形,我们定义倾斜角α进行描述 ,其正切值等于塔尖与底层中心的水平距离与塔高的比值,即tanα=d/h ;对于弯曲变形,我们首先通过投影法拟合出古塔各层中心点所在空间曲线的参数方程,再利用空间曲线的曲率来刻画古塔的弯曲度K;对于扭曲变形,考虑到扭曲变形实际为古塔水平面的旋转产生,因此我们采用二维坐标( x, y)旋转的矩阵变换,通过各观测量点前后的坐标确定古塔的旋转角度θ,以此刻画古塔的扭曲度。但是,实际中水平面坐标( x, y)不仅发生了旋转变换,还受到倾斜弯曲变形等所引起的平移变化的影响,因此我们在考虑坐标变换的时候加入了平移量( p,q )使其更加准确合理。

  问题三为分析古塔的变形情况。本文中,我们认为建筑物变形由建筑物的倾斜、弯曲、扭曲等因素共同造成。由于附录只给出了四次统计的数据,而我们的目标是分析古塔未来多年的变化趋势,因此我们采用信息不完全、不充分的预测系统——灰色预测对古塔未来的变形趋势进行预测。

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可
clc,clear
x0=[0.0141,0.0142,0.0146,0.0147];%原始数据序列
n=length(x0);
a_x0=diff(x0)';%求1次累减序列,即1阶向前差分
B=[-x0(2:end)',ones(n-1,1)];
u=B\a_x0%最小二乘拟合参数
x=dsolve('D2x+a*Dx=b','x(0)=c1,Dx(0)=c2');%求二阶微分方程的符号解
x=subs(x,{'a','b','c1','c2'},{u(1),u(2),x0(1),x0(1)});
yuce=subs(x,'t',0:n-1)%求已知数据点1次累加序列的预测值
x=vpa(x,6)
x0_hat=[yuce(1),diff(yuce)]%求已知数据点的预测值
epsilon=x0-x0_hat%求残差
delta=abs(epsilon./x0)%求相对误差
clc
clear
x1=[0.000141404 	0.000121639 	0.000089860 	0.000056555]; 
x2=[0.000141405 	0.000121641 	0.000089920 	0.000056556 ];
x3=[0.000141406 	0.000121642 	0.000089977 	0.000056556 ];
x4=[0.000141407 	0.000121643 	0.000090030 	0.000056557 ];
x5=[0.000141408 	0.000121644 	0.000090089 	0.000056557 ];
x6=[0.000141408 	0.000121645 	0.000090149 	0.000056558 ];
x7=[0.000141409 	0.000121646 	0.000090200 	0.000056558 ];
x8=[0.000141409 	0.000121646 	0.000090250 	0.000056558 ];
x9=[0.000141409 	0.000121647 	0.000090301 	0.000056559 ];
x10=[0.000141409 	0.000121647 	0.000090352 	0.000056559 ];
x11=[0.000141408 	0.000121648 	0.000090417 	0.000056559 ];
x12=[0.000141408 	0.000121648 	0.000090486 	0.000056560 ];
x13=[0.000141408 	0.000121648 	0.000090555 	0.000056560 ];
x14=[0.000141407 	0.000121648 	0.000090599 	0.000056560 ];x0=x1(1,:);%原始数据序列
n=length(x0);
a_x0=diff(x0)';%求1次累减序列,即1阶向前差分
B=[-x0(2:end)',ones(n-1,1)];
u=B\a_x0%最小二乘拟合参数
x=dsolve('D2x+a*Dx=b','x(0)=c1,Dx(0)=c2');%求二阶微分方程的符号解
x=subs(x,{'a','b','c1','c2'},{u(1),u(2),x0(1),x0(1)});
yuce=subs(x,'t',0:n-1)%求已知数据点1次累加序列的预测值
x=vpa(x,6)
x0_hat=[yuce(1),diff(yuce)]%求已知数据点的预测值
epsilon=x0-x0_hat%求残差
delta=abs(epsilon./x0)%求相对误差
a1(1,:)=x0;
a1(2,:)=x0_hat;
a1(3,:)=epsilon;
a1(4,:)=delta;x0=x2(1,:);%原始数据序列
n=length(x0);
a_x0=diff(x0)';%求1次累减序列,即1阶向前差分
B=[-x0(2:end)',ones(n-1,1)];
u=B\a_x0%最小二乘拟合参数
x=dsolve('D2x+a*Dx=b','x(0)=c1,Dx(0)=c2');%求二阶微分方程的符号解
x=subs(x,{'a','b','c1','c2'},{u(1),u(2),x0(1),x0(1)});
yuce=subs(x,'t',0:n-1)%求已知数据点1次累加序列的预测值
x=vpa(x,6)
x0_hat=[yuce(1),diff(yuce)]%求已知数据点的预测值
epsilon=x0-x0_hat%求残差
delta=abs(epsilon./x0)%求相对误差
a2(1,:)=x0;
a2(2,:)=x0_hat;
a2(3,:)=epsilon;
a2(4,:)=delta;x0=x3(1,:);%原始数据序列
n=length(x0);
a_x0=diff(x0)';%求1次累减序列,即1阶向前差分
B=[-x0(2:end)',ones(n-1,1)];
u=B\a_x0%最小二乘拟合参数
x=dsolve('D2x+a*Dx=b','x(0)=c1,Dx(0)=c2');%求二阶微分方程的符号解
x=subs(x,{'a','b','c1','c2'},{u(1),u(2),x0(1),x0(1)});
yuce=subs(x,'t',0:n-1)%求已知数据点1次累加序列的预测值
x=vpa(x,6)
x0_hat=[yuce(1),diff(yuce)]%求已知数据点的预测值
epsilon=x0-x0_hat%求残差
delta=abs(epsilon./x0)%求相对误差
a3(1,:)=x0;
a3(2,:)=x0_hat;
a3(3,:)=epsilon;
a3(4,:)=delta;x0=x4(1,:);%原始数据序列
n=length(x0);
a_x0=diff(x0)';%求1次累减序列,即1阶向前差分
B=[-x0(2:end)',ones(n-1,1)];
u=B\a_x0%最小二乘拟合参数
x=dsolve('D2x+a*Dx=b','x(0)=c1,Dx(0)=c2');%求二阶微分方程的符号解
x=subs(x,{'a','b','c1','c2'},{u(1),u(2),x0(1),x0(1)});
yuce=subs(x,'t',0:n-1)%求已知数据点1次累加序列的预测值
x=vpa(x,6)
x0_hat=[yuce(1),diff(yuce)]%求已知数据点的预测值
epsilon=x0-x0_hat%求残差
delta=abs(epsilon./x0)%求相对误差
a4(1,:)=x0;
a4(2,:)=x0_hat;
a4(3,:)=epsilon;
a4(4,:)=delta;x0=x5(1,:);%原始数据序列
n=length(x0);
a_x0=diff(x0)';%求1次累减序列,即1阶向前差分
B=[-x0(2:end)',ones(n-1,1)];
u=B\a_x0%最小二乘拟合参数
x=dsolve('D2x+a*Dx=b','x(0)=c1,Dx(0)=c2');%求二阶微分方程的符号解
x=subs(x,{'a','b','c1','c2'},{u(1),u(2),x0(1),x0(1)});
yuce=subs(x,'t',0:n-1)%求已知数据点1次累加序列的预测值
x=vpa(x,6)
x0_hat=[yuce(1),diff(yuce)]%求已知数据点的预测值
epsilon=x0-x0_hat%求残差
delta=abs(epsilon./x0)%求相对误差
a5(1,:)=x0;
a5(2,:)=x0_hat;
a5(3,:)=epsilon;
a5(4,:)=delta;x0=x6(1,:);%原始数据序列
n=length(x0);
a_x0=diff(x0)';%求1次累减序列,即1阶向前差分
B=[-x0(2:end)',ones(n-1,1)];
u=B\a_x0%最小二乘拟合参数
x=dsolve('D2x+a*Dx=b','x(0)=c1,Dx(0)=c2');%求二阶微分方程的符号解
x=subs(x,{'a','b','c1','c2'},{u(1),u(2),x0(1),x0(1)});
yuce=subs(x,'t',0:n-1)%求已知数据点1次累加序列的预测值
x=vpa(x,6)
x0_hat=[yuce(1),diff(yuce)]%求已知数据点的预测值
epsilon=x0-x0_hat%求残差
delta=abs(epsilon./x0)%求相对误差
a6(1,:)=x0;
a6(2,:)=x0_hat;
a6(3,:)=epsilon;
a6(4,:)=delta;x0=x7(1,:);%原始数据序列
n=length(x0);
a_x0=diff(x0)';%求1次累减序列,即1阶向前差分
B=[-x0(2:end)',ones(n-1,1)];
u=B\a_x0%最小二乘拟合参数
x=dsolve('D2x+a*Dx=b','x(0)=c1,Dx(0)=c2');%求二阶微分方程的符号解
x=subs(x,{'a','b','c1','c2'},{u(1),u(2),x0(1),x0(1)});
yuce=subs(x,'t',0:n-1)%求已知数据点1次累加序列的预测值
x=vpa(x,6)
x0_hat=[yuce(1),diff(yuce)]%求已知数据点的预测值
epsilon=x0-x0_hat%求残差
delta=abs(epsilon./x0)%求相对误差
a7(1,:)=x0;
a7(2,:)=x0_hat;
a7(3,:)=epsilon;
a7(4,:)=delta;x0=x8(1,:);%原始数据序列
n=length(x0);
a_x0=diff(x0)';%求1次累减序列,即1阶向前差分
B=[-x0(2:end)',ones(n-1,1)];
u=B\a_x0%最小二乘拟合参数
x=dsolve('D2x+a*Dx=b','x(0)=c1,Dx(0)=c2');%求二阶微分方程的符号解
x=subs(x,{'a','b','c1','c2'},{u(1),u(2),x0(1),x0(1)});
yuce=subs(x,'t',0:n-1)%求已知数据点1次累加序列的预测值
x=vpa(x,6)
x0_hat=[yuce(1),diff(yuce)]%求已知数据点的预测值
epsilon=x0-x0_hat%求残差
delta=abs(epsilon./x0)%求相对误差
a8(1,:)=x0;
a8(2,:)=x0_hat;
a8(3,:)=epsilon;
a8(4,:)=delta;x0=x9(1,:);%原始数据序列
n=length(x0);
a_x0=diff(x0)';%求1次累减序列,即1阶向前差分
B=[-x0(2:end)',ones(n-1,1)];
u=B\a_x0%最小二乘拟合参数
x=dsolve('D2x+a*Dx=b','x(0)=c1,Dx(0)=c2');%求二阶微分方程的符号解
x=subs(x,{'a','b','c1','c2'},{u(1),u(2),x0(1),x0(1)});
yuce=subs(x,'t',0:n-1)%求已知数据点1次累加序列的预测值
x=vpa(x,6)
x0_hat=[yuce(1),diff(yuce)]%求已知数据点的预测值
epsilon=x0-x0_hat%求残差
delta=abs(epsilon./x0)%求相对误差
a9(1,:)=x0;
a9(2,:)=x0_hat;
a9(3,:)=epsilon;
a9(4,:)=delta;x0=x10(1,:);%原始数据序列
n=length(x0);
a_x0=diff(x0)';%求1次累减序列,即1阶向前差分
B=[-x0(2:end)',ones(n-1,1)];
u=B\a_x0%最小二乘拟合参数
x=dsolve('D2x+a*Dx=b','x(0)=c1,Dx(0)=c2');%求二阶微分方程的符号解
x=subs(x,{'a','b','c1','c2'},{u(1),u(2),x0(1),x0(1)});
yuce=subs(x,'t',0:n-1)%求已知数据点1次累加序列的预测值
x=vpa(x,6)
x0_hat=[yuce(1),diff(yuce)]%求已知数据点的预测值
epsilon=x0-x0_hat%求残差
delta=abs(epsilon./x0)%求相对误差
a10(1,:)=x0;
a10(2,:)=x0_hat;
a10(3,:)=epsilon;
a10(4,:)=delta;x0=x11(1,:);%原始数据序列
n=length(x0);
a_x0=diff(x0)';%求1次累减序列,即1阶向前差分
B=[-x0(2:end)',ones(n-1,1)];
u=B\a_x0%最小二乘拟合参数
x=dsolve('D2x+a*Dx=b','x(0)=c1,Dx(0)=c2');%求二阶微分方程的符号解
x=subs(x,{'a','b','c1','c2'},{u(1),u(2),x0(1),x0(1)});
yuce=subs(x,'t',0:n-1)%求已知数据点1次累加序列的预测值
x=vpa(x,6)
x0_hat=[yuce(1),diff(yuce)]%求已知数据点的预测值
epsilon=x0-x0_hat%求残差
delta=abs(epsilon./x0)%求相对误差
a11(1,:)=x0;
a11(2,:)=x0_hat;
a11(3,:)=epsilon;
a11(4,:)=delta;x0=x12(1,:);%原始数据序列
n=length(x0);
a_x0=diff(x0)';%求1次累减序列,即1阶向前差分
B=[-x0(2:end)',ones(n-1,1)];
u=B\a_x0%最小二乘拟合参数
x=dsolve('D2x+a*Dx=b','x(0)=c1,Dx(0)=c2');%求二阶微分方程的符号解
x=subs(x,{'a','b','c1','c2'},{u(1),u(2),x0(1),x0(1)});
yuce=subs(x,'t',0:n-1)%求已知数据点1次累加序列的预测值
x=vpa(x,6)
x0_hat=[yuce(1),diff(yuce)]%求已知数据点的预测值
epsilon=x0-x0_hat%求残差
delta=abs(epsilon./x0)%求相对误差
a12(1,:)=x0;
a12(2,:)=x0_hat;
a12(3,:)=epsilon;
a12(4,:)=delta;x0=x13(1,:);%原始数据序列
n=length(x0);
a_x0=diff(x0)';%求1次累减序列,即1阶向前差分
B=[-x0(2:end)',ones(n-1,1)];
u=B\a_x0%最小二乘拟合参数
x=dsolve('D2x+a*Dx=b','x(0)=c1,Dx(0)=c2');%求二阶微分方程的符号解
x=subs(x,{'a','b','c1','c2'},{u(1),u(2),x0(1),x0(1)});
yuce=subs(x,'t',0:n-1)%求已知数据点1次累加序列的预测值
x=vpa(x,6)
x0_hat=[yuce(1),diff(yuce)]%求已知数据点的预测值
epsilon=x0-x0_hat%求残差
delta=abs(epsilon./x0)%求相对误差
a13(1,:)=x0;
a13(2,:)=x0_hat;
a13(3,:)=epsilon;
a13(4,:)=delta;x0=x14(1,:);%原始数据序列
n=length(x0);
a_x0=diff(x0)';%求1次累减序列,即1阶向前差分
B=[-x0(2:end)',ones(n-1,1)];
u=B\a_x0%最小二乘拟合参数
x=dsolve('D2x+a*Dx=b','x(0)=c1,Dx(0)=c2');%求二阶微分方程的符号解
x=subs(x,{'a','b','c1','c2'},{u(1),u(2),x0(1),x0(1)});
yuce=subs(x,'t',0:n-1)%求已知数据点1次累加序列的预测值
x=vpa(x,6)
x0_hat=[yuce(1),diff(yuce)]%求已知数据点的预测值
epsilon=x0-x0_hat%求残差
delta=abs(epsilon./x0)%求相对误差
a14(1,:)=x0;
a14(2,:)=x0_hat;
a14(3,:)=epsilon;
a14(4,:)=delta;
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1562296.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

网络设备管理

一、telnet远程管理 [R2]user-interface vty 0 4 [R2-ui-vty0-4]authentication-mode password Please configure the login password (maximum length 16):123456 [R2-ui-vty0-4]<R1>telnet 192.168.12.2Press CTRL_] to quit telnet modeTrying 192.168.12.2 ...Conne…

常见锁策略总结:从悲观锁到自旋锁

欢迎浏览高耳机的博客 希望我们彼此都有更好的收获 感谢三连支持&#xff01; 在多线程编程中,锁是保证数据一致性和线程安全的重要机制.本文将直观且简洁的介绍常见的锁策略,包括它们的基本逻辑,使用场景以及优缺点. 悲观锁 与 乐观锁 悲观锁:预防性策略 悲观锁是一种主动锁…

国外解压视频素材哪里找?五个海外解压视频素材网站推荐

国外解压视频素材哪里找&#xff1f;五个海外解压视频素材网站推荐 如果你正在寻找国外的解压视频素材&#xff0c;那么今天这篇文章一定能帮助你。无论是修牛蹄、洗地毯&#xff0c;还是切肥皂、玩解压游戏等&#xff0c;下面分享的几个网站都是你找到高质量海外解压视频素材…

微信收藏的超能力:五大秘籍让你生活更高效

在当今这个信息爆炸的时代&#xff0c;我们每天都会接触到大量的信息&#xff0c;而如何有效地管理这些信息便成为了一个关键的问题。微信&#xff0c;作为一款几乎人人都在使用的社交软件&#xff0c;其功能远不止于聊天交友。 微信收藏功能&#xff0c;就是一个常常被忽视却…

【系统集成中级】线上直播平台开发项目质量管理案例分析

【系统集成中级】线上直播平台开发项目质量管理案例分析 一、案例二、小林在项目质量管理中存在的问题&#xff08;一&#xff09;计划阶段缺失&#xff08;二&#xff09;测试用例编制与执行问题&#xff08;三&#xff09;质量管理流程问题&#xff08;四&#xff09;质量保证…

中科星图GVE(案例)——AI实现建筑用地变化前后对比情况

目录 简介 函数 gve.Services.AI.ConstructionLandChangeExtraction(image1,image2) 代码 结果 知识星球 机器学习 简介 AI可以通过分析卫星图像、航拍影像或其他地理信息数据&#xff0c;实现建筑用地变化前后对比。以下是一种可能的实现方法&#xff1a; 数据获取&am…

uniapp-小程序开发0-1笔记大全

uniapp官网&#xff1a; https://uniapp.dcloud.net.cn/tutorial/syntax-js.html uniapp插件市场&#xff1a; https://ext.dcloud.net.cn/ uviewui类库&#xff1a; https://www.uviewui.com/ 柱状、扇形、仪表盘库&#xff1a; https://www.ucharts.cn/v2/#/ CSS样式&…

ICML 2024 | 牛津提出合作图神经网络Co-GNNs,更灵活的消息传递新范式

引用次数:9 引用格式:Finkelshtein B, Huang X, Bronstein M, et al. Cooperative graph neural networks[J]. arXiv preprint arXiv:2310.01267, 2023. 一、摘要 本文提出了一种训练图神经网络的新框架“合作图神经网络”(Co-GNNs),其中每一个节点可以被看作一个独立的玩…

CLIP——多模态预训练模型介绍

CLIP: Contrastive Language-Image Pre-training CLIP: 对比语言-图像预训练 CLIP的是由 OpenAI 2021年在 Learning Transferable Visual Models From Natural Language Supervision【利用文本的监督信号训练一个迁移能力强的视觉模型】中提出的一种多模态预训练模型&#xff…

PN8036非隔离DIP7直插12V500MA开关电源芯片

PN8036宽输出范围非隔离交直流转换芯片 &#xff0c;集成PFM控制器及650V高雪崩能力智能功率MOSFET&#xff0c;用于外围元器件极精简的小功率非隔离开关电源。PN8036内置650V高压启动模块&#xff0c;实现系统快速启动、超低待机功能。该芯片提供了完整的智能化保护功能&#…

提升邮件营销设计精准度秘诀,效率与效果实践

邮件营销通过确定目标群体、数据分析、邮件设计、测试优化、保持频率时效性及结合其他渠道实现精准营销&#xff0c;提高市场效益。ZohoCampaigns集成CRM、自动化功能和客户细分提升效果。 1、确定目标群体 精准营销的第一步是了解并确定你的目标群体。标定目标群体包括年龄、…

前端必知必会-Bootstrap 5 工具提示Tooltip

文章目录 Bootstrap 5 工具提示如何创建工具提示定位工具提示 总结 Bootstrap 5 工具提示 工具提示组件是一个小的弹出框&#xff0c;当用户将鼠标指针移到元素上时会出现&#xff1a; 如何创建工具提示 要创建工具提示&#xff0c;请将 data-bs-toggle“tooltip” 属性添加…

xss-labs靶场第六关测试报告

目录 一、测试环境 1、系统环境 2、使用工具/软件 二、测试目的 三、操作过程 1、注入点寻找 2、使用hackbar进行payload测试 3、绕过结果 四、源代码分析 五、结论 一、测试环境 1、系统环境 渗透机&#xff1a;本机(127.0.0.1) 靶 机&#xff1a;本机(127.0.0.…

jupyterlab的安装与使用攻略/包括汉化方法

官网链接 Project Jupyter | Home 1.第一步安装 打开控制台 使用pip工具安装 pip install jupyterlab 如图 2.安装成功后启动 jupyter lab 会自动启动它的web页面 然后就可以正常使用咯&#xff01;&#xff01; 如果需要更换浏览器访问 新开控制台执行下面命令 jupy…

C++面向对象多态篇

目录 1. 什么是多态&#xff1f; 2. 多态的概念 3. 函数覆盖 4. 虚函数的定义 5. 多态实现 6. 多态的原理 7. 虚析构函数&#xff08;掌握&#xff09; 8. 类型转换 8.1 static_cast 8.2 dynamic_cast 8.3 const_cast&#xff08;了解&#xff09; 8.4 reinterpret…

3D打印矫形器市场报告:未来几年年复合增长率CAGR为10.8%

3D 打印矫形器是指使用 3D 打印技术制作的定制外部支撑装置。它们有助于稳定、引导、缓解或纠正肌肉骨骼状况&#xff0c;并根据个体患者的解剖结构进行设计&#xff0c;通常使用 3D 扫描和建模技术。3D 打印在矫形器方面的主要优势是能够生产精确适合患者解剖结构的定制装置&a…

sherpa-ncnn 语言模型简单对比

在昨天把系统搞崩溃前&#xff0c;对sherpa-ncnn的中文模型做了一个简单的对比。这次使用的分别是sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13&#xff08;以下简称bilingual-zh-en-2023-02-13&#xff09;和sherpa-ncnn-streaming-zipformer-small-bilingual…

STM32学习--5-1 对射式红外传感器计次

接线图 原理图&#xff1a; CountSensor.c #include "stm32f10x.h" // Device headeruint16_t CountSensor_Count;void CountSensor_Init(void) {RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE); // 开启APB2Periph外设GPIOB时钟RCC_APB2Pe…

生产报工信息化全流程大讲解

在企业的生产管理中&#xff0c;生产报工是一个关键环节&#xff0c;但传统的生产报工方式存在诸多痛点&#xff0c;制约了企业的发展。随着数字化技术的发展&#xff0c;多个平台为企业提供了有效的解决方案。基于生产报工信息化方案报告》白皮书&#xff0c;本文深入探讨生产…

复位电路的亚稳态

复位导致亚稳态的概念&#xff1a; 同步电路中&#xff0c;输入数据需要与时钟满足setup time和hold time才能进行数据的正常传输&#xff08;数据在这个时间段内必须保持不变&#xff1a;1不能变为0&#xff0c;0也不能变为1&#xff09;&#xff0c;防止亚稳态&#xff1b; …