AI助力农作物自动采摘,基于嵌入式端超轻量级模型LeYOLO全系列【n/s/m/l】参数模型开发构建作物生产场景下番茄采摘检测计数分析系统

去年十一那会无意间刷到一个视频展示的就是德国机械收割机非常高效自动化地24小时不间断地在超广阔的土地上采摘各种作物,专家设计出来了很多用于采摘不同农作物的大型机械,看着非常震撼,但是我们国内农业的发展还是相对比较滞后的,小的时候拔草是一个人一列蹲在地里就在那埋头拔草,不知道什么时候才能走到地的尽头,小块的分散的土地太多基本上都是只能人工手工来取收割,大点的连片的土地可以用收割机来收割,不过收割机基本都是用来收割小麦的,最近几年好像老家也能看到用于收割玉米的机器了不过相对还是比较少的,玉米的收割我们基本上还是人工来收割的,不仅累效率还低遇上对玉米叶片过敏的就更要命了。。。。闲话就扯到这里了。

有时候经常在想我们的农业机械化自动化什么时候能再向前迈进一大步,回顾德国的工业机械,在视频展示的效果中,其实很关键的主要是两部分,一部分是机器视觉定位检测识别,另一部分是机械臂传动轴,两部分相互配合才能完成采摘工作,在前文中我们开发实践了番茄作物采摘场景下的成熟度检测识别项目,如下:

《AI助力农作物自动采摘,基于YOLOv3全系列【yolov3tiny/yolov3/yolov3spp】参数模型开发构建作番茄采摘场景下番茄成熟度检测识别计数分析系统》

《AI助力农作物自动采摘,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建作番茄采摘场景下番茄成熟度检测识别计数分析系统》

《AI助力农作物自动采摘,基于YOLOv7【tiny/l/x】不同系列参数模型开发构建作物番茄采摘场景下番茄成熟度检测识别分析系统》

《AI助力农作物自动采摘,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建作物番茄采摘场景下番茄成熟度检测识别分析系统》

《AI助力农作物自动采摘,基于YOLOv9全系列【t/s/m/yolov9/c/e】+GELAN全系列【t/s/m/gelan/c/e】参数模型开发构建作物番茄采摘场景下番茄成熟度检测识别分析系统》 

《AI助力农作物自动采摘,基于YOLOv10全系列【n/s/m/b/l/x】参数模型开发构建作物番茄采摘场景下番茄成熟度检测识别分析系统》

《AI助力农作物自动采摘,基于DETR(DEtection TRansformer)开发构建番茄采摘场景下番茄成熟度检测识别计数分析系统》

《AI助力农作物自动采摘,基于嵌入式端超轻量级模型LeYOLO全系列【n/s/m/l】参数模型开发构建作物番茄采摘场景下番茄成熟度检测识别分析系统》

此后,我们在实验室环境下采集构建了种植的番茄植株数据进行人工标注,想要开发实践番茄检测计数相关的实践,如下:

《AI助力农作物自动采摘,基于YOLOv3全系列【yolov3tiny/yolov3/yolov3spp】参数模型开发构建作物生产场景下番茄采摘检测计数分析系统》

《AI助力农作物自动采摘,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建作物生产场景下番茄采摘检测计数分析系统》

《AI助力农作物自动采摘,基于YOLOv7【tiny/l/x】不同系列参数模型开发构建作物生产场景下番茄采摘检测计数分析系统》

《AI助力农作物自动采摘,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建作物生产场景下番茄采摘检测计数分析系统》

《AI助力农作物自动采摘,基于DETR(DEtection TRansformer)开发构建作物生产场景下番茄采摘检测计数分析系统》

《AI助力农作物自动采摘,基于YOLOv9全系列【yolov9/t/s/m/c/e】参数模型开发构建作物生产场景下番茄采摘检测计数分析系统》

《AI助力农作物自动采摘,基于YOLOv10全系列【n/s/m/b/l/x】参数模型开发构建作物生产场景下番茄采摘检测计数分析系统》

传统的YOLOs系列的模型虽然提供了不同参数量级系列的模型,方便部署应用到不同的硬件平台上面去,但是实际在弱算力设备下还是捉襟见肘的,比如:对于树莓派来讲,那YOLOv5系列最为轻量级的n系列的模型也是非常吃力,但是那YOLOv5-lite系列的模型就可以比较轻松地跑起来,这印证了模型轻量化设计的必要性,本文采用的是正是经过轻量化设计了leYOLO模型,首先看下实例效果:

简单看下实例数据情况:

深度神经网络中的计算效率对于目标检测至关重要,尤其是在新模型将速度优先于高效计算(FLOP)的情况下。这种演变在某种程度上已经落后于嵌入式和面向移动的AI对象检测应用程序。这里重点讨论了基于FLOP的高效目标检测计算的神经网络结构的设计选择,并提出了几种优化方法来提高基于YLO的模型的效率。
首先,介绍了一种基于反向瓶颈和信息瓶颈原理的有效主干扩展方法。其次,提出了快速金字塔结构网络(FPAN),旨在促进快速多尺度特征共享,同时减少计算资源。最后提出了一个解耦的网络中网络(DNiN)检测头的设计,以提供快速而轻量级的计算分类和回归任务。
在这些优化的基础上,利用更高效的主干,为对象检测和以YOLO为中心的模型(称为LeYOLO)提供了一种新的缩放范例。在各种资源限制下始终优于现有模型,实现了前所未有的准确性和失败率。值得注意的是,LeYOLO Small在COCO val上仅以4.5次失败(G)获得了38.2%的竞争性mAP分数,与最新最先进的YOLOv9微小模型相比,计算量减少了42%,同时实现了类似的精度。我们的新型模型系列实现了以前未达到的浮点精度比,提供了从超低神经网络配置(<1 GFLOP)到高效但要求苛刻的目标检测设置(>4 GFLOP)的可扩展性,对于0.66、1.47、2.53、4.51、5.8和8.4浮点(G),具有25.2、31.3、35.2、38.2、39.3和41 mAP。

ModelsmAPImage SizeFLOP (G)
LeYOLONano25.23200.66
LeYOLONano31.34801.47
LeYOLOSmall35.24802.53
LeYOLOSmall38.26404.51
LeYOLOMedium39.36405.80
LeYOLOLarge41.07688.40

一共提供了n、s、m和l四款不同参数量级的模型。

这里我们保持完全相同的实验参数设置来进行四款模型的开发训练,等待训练完成之后我们来整体进行各项指标的对比分析。

【Precision曲线】
精确率曲线(Precision Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【loss曲线】

在深度学习的训练过程中,loss函数用于衡量模型预测结果与实际标签之间的差异。loss曲线则是通过记录每个epoch(或者迭代步数)的loss值,并将其以图形化的方式展现出来,以便我们更好地理解和分析模型的训练过程。

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

整体对比分析来看:不难发现四款不同参数量级的模型最终达到了较为相似的结果,这里综合参数量考虑我们最终选定了s系列的模型来作为线上的推理计算模型。

接下来看下s系列模型的详细情况。

【离线推理实例】

【Batch实例】

【混淆矩阵】

【F1值曲线】

【Precision曲线】

【PR曲线】

【Recall曲线】

【训练可视化】

智慧农业赛道是未来非常有潜力的方向,基于AI赋能农业智慧生产作业是大有可为的模式,本文仅从实验的角度做了初步的简单尝试,希望抛砖引玉,未来能有更多落地的应用出现造福农业发展。

感兴趣的话也都可以试试看!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1559301.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

计算机的错误计算(一百一十八)

摘要 探讨一个不动点的计算精度问题。 不动点是一类特殊的循环迭代。它有形式 例1. 已知迭代[1] 计算 显然&#xff0c;每个 均为 0.5 . 不妨在Visual Studio 2010 下用下列C语言代码计算&#xff1a; #include <stdio.h> #include <math.h>int main() {do…

【大语言模型-论文速读】GPT的不确定性判断

【大语言模型-论文精读】GPT’s Judgements Under Uncertainty Authors: Payam Saeedi and Mahsa Goodarzi 论文&#xff1a;https://arxiv.org/pdf/2410.02820 文章标题翻译 GPT的不确定性判断 Payam Saeedi Rochester Institute of Technology Mahsa Goodarzi The State …

【exp报错注入】

整数范围 最大整数 exp 函数介绍 报错盲注注入 payload分析 709C-ASCII 值就等于我们下面的 7091-1 &#xff0c;C就是我们要猜的值&#xff0c;当我们猜测的值和ASCII码相等时&#xff0c;那么exp就不会出现报错&#xff0c;因为1-1还是等于709&#xff1a; 练习 id1 an…

【AIGC】OpenAI API在快速开发中的实践与应用:优化ChatGPT提示词Prompt加速工程

博客主页&#xff1a; [小ᶻZ࿆] 本文专栏: AIGC | ChatGPT 文章目录 &#x1f4af;前言&#x1f4af;使用最新型号确保最佳实践利用最新模型进行高效任务处理为什么要选择最新模型&#xff1f;结论 &#x1f4af;指令与上下文的分隔最佳实践分隔指令和上下文的重要性使用符…

Win32 API 控制台鼠标操作、坐标获取与相关函数介绍

Win32 API 控制台鼠标操作、坐标获取与相关函数介绍 一、前置介绍读取控制台输入缓冲区数据 ReadConsoleInput 函数控制台输入缓冲区中的输入事件 INPUT_RECORD 结构鼠标输入事件 MOUSE_EVENT_RECORD 结构更改输入模式 SetConsoleMode 函数 二、鼠标坐标获取(以下代码环境为 VS…

PCL 3D-SIFT关键点检测(Z方向梯度约束

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 2.1.1 SIFT关键点检测 2.1.2 可视化函数 2.2完整代码 三、实现效果 PCL点云算法汇总及实战案例汇总的目录地址链接&#xff1a; PCL点云算法与项目实战案例汇总&#xff08;长期更新&#…

SQL优化 where谓词条件OR优化

1.测试表&#xff0c;及测试语句where条件中OR对应两个字段选择度很高 create table t618 as select * from dba_objects; select object_name from t618 where (object_id12043 or DATA_OBJECT_ID12043) and STATUSVALID; 2.没有索引情况下&#xff0c;全表扫描逻辑读…

C++核心编程和桌面应用开发 第九天(静态多态 动态多态 纯虚函数 抽象类 虚析构 纯虚析构 向上向下类型转换 重载重写重定义)

目录 1.1静态多态 1.2动态多态 1.2.1满足条件 1.2.2动态多态的使用条件 1.3纯虚函数和抽象类 1.3.1纯虚函数 1.3.2抽象类 1.4虚析构/纯虚析构 1.5向上向下类型转换 1.5.1向下类型转换 1.5.2向上类型转换 1.5.3多态中的类型转换 1.6重载重写重定义 1.6.1重载 1.6…

qwt实现码流柱状图多色柱体显示

qwt实现码流柱状图多色柱体显示 1. 前言2. qt实现柱状图3.qwt基础说明3.1 qwt安装与使用3.1.1 下载qwt源码3.1.2 编译3.1.3 安装3.1.4 使用3.2 QwtPlotBarChart类3.2.1画图步骤3.2.2 specialSymbol3.3.3 barTitle4 BsBarChart定制4.1 每个柱体可以显示不同的颜色4.2 每个柱体可…

MFC项目如何使用hiredis库连接redis

如何在windows平台使用c连接redis 1. 下载hiredis的vs工程文件2. 使用vs2022编译hiredis3.项目中调用4. 集群连接5. 简单的封装下 最近需要在windows PC终端读取redis数据。我这里使用hiredis连接redis. 工程是vs2022开发的。 1. 下载hiredis的vs工程文件 windows平台需要自己…

【C/C++】错题记录(七)

题目一 题目二 C在调用函数时&#xff0c;当实参和形参的数据类型不一致时&#xff0c;会发生数据类型转换&#xff01;将低精度转换为高精度时&#xff0c;由编译器隐式完成&#xff1b;将高精度转换为低精度时&#xff0c;必须用强制类型转换运算符&#xff1b; static_cast…

Redis:分布式 - 哨兵

Redis&#xff1a;分布式 - 哨兵 概念哨兵 Docker 搭建哨兵分布式选举流程 概念 Redis 的主从复制模式下&#xff0c;一旦主节点由于故障不能提供服务&#xff0c;需要人工进行主从切换&#xff0c;同时大量的客户端需要被通知切换到新的主节点上&#xff0c;对于上了一定规模…

浏览器动态移动的小球源码分享

浏览器动态移动的小球源码分享 <script>(function(a){var width100,height100,borderRadius100,circlefunction(){};circle.prototype{color:function(){let colour "#"Math.floor(Math.random()*255).toString(16)Math.floor(Math.random()*255).toString…

Linux块设备驱动实验

直接参考【正点原子】I.MX6U嵌入式Linux驱动开发指南V1.81 本文仅作为个人笔记使用&#xff0c;方便进一步记录自己的实践总结。 前面我们都是在学习字符设备驱动&#xff0c;本章我们来学习一下块设备驱动框架&#xff0c;块设备驱动是Linux 三大驱动类型之一。块设备驱动要远…

Fiddler配合wireshark解密ssl

环境&#xff1a; win11&#xff08;wireshark&#xff09;--虚拟机win7&#xff08;Fiddler&#xff09;---虚拟机win7&#xff08;HTTPS站点&#xff09; 软件安装问题&#xff1a; 需要.net环境&#xff0c;NDP461-KB3102436-x86-x64-AllOS-ENU.exe。 安装fiddler后安装下…

vite项目打包md5报‘default‘ is not exported错误的解决方法

报错如下&#xff1a; 某一个包中用es方式引入md5模块&#xff0c;导致打包报错&#xff0c;经过一番探究测试&#xff0c;发现我的项目中用了“vite-plugin-require-transform”这个插件&#xff0c;是这个插件在做转换的时候报错了&#xff0c;如果你也是这个原因可按我的方式…

代码随想录day24:贪心part2

121. 买卖股票的最佳时机 class Solution {public int maxProfit(int[] prices) {int ans 0;int minPrice prices[0];for(int p : prices){ans Math.max(ans, p - minPrice);minPrice Math.min(p, minPrice);}return ans;} } 运用前缀和思想&#xff0c; 从左到右枚举卖…

Spring Boot教学资源库:构建微服务的基石

2 相关技术简介 2.1Java技术 Java是一种非常常用的编程语言&#xff0c;在全球编程语言排行版上总是前三。在方兴未艾的计算机技术发展历程中&#xff0c;Java的身影无处不在&#xff0c;并且拥有旺盛的生命力。Java的跨平台能力十分强大&#xff0c;只需一次编译&#xff0c;任…

dart-sass和node-sass的区别,使用dart-sass后可能会出现的问题

前言&#xff1a; 2020 年 10 月 27 日&#xff0c;Sass 官方团队正式宣布 Libsass 将弃用&#xff0c;以及基于它的 Node Sass 和 SassC&#xff0c;并且建议用户使用 Dart Sass。如果在 vue 脚手架搭建的项目中需要使用 sass&#xff0c;建议初始化时勾选 sass 配置&#xff…

前端优化之路:git commit 校验拦截

但是想要做到高效落地执行&#xff0c;就需要做些别的功课&#xff0c;先展示下成果图 需要了解git hooks&#xff0c;它是git的钩子&#xff0c;就像vue拥有自己的钩子一样。 官方文档&#xff1a;https://git-scm.com/docs/githooks 项目安装 husky&#xff0c;建议稳定版本…