Netty笔记06-组件ByteBuf

文章目录

  • 概述
    • ByteBuf 的特点
    • ByteBuf的组成
    • ByteBuf 的生命周期
  • ByteBuf 相关api
    • 1. ByteBuf 的创建
    • 2. 直接内存 vs 堆内存
    • 3. 池化 vs 非池化
    • 4. ByteBuf写入
      • 代码示例
    • 5. ByteBuffer扩容
    • 6. ByteBuf 读取
    • 7. retain() & release()
      • TailContext 释放未处理消息逻辑
      • HeadContext
    • 8. ByteBuf.slice()
      • 调用有参的slice()
      • 调用无参的ByteBuf.slice()
    • 9. ByteBuf.duplicate()
      • duplicate() 方法的特点
      • 代码示例
    • 10. ByteBuf.copy()
      • copy() 方法的特点
      • 代码示例
    • 11. CompositeByteBuf
    • 12. Unpooled
  • 总结ByteBuf


概述

在Netty中,ByteBuf 是一个非常重要的组件,它用于处理二进制数据。ByteBuf 是 Netty 设计的一种高效的内存模型,用于替代传统的 byte[] 数组和 ByteBuffer 类型,旨在提高性能并减少垃圾回收的开销。

ByteBuf 的特点

  • 内存管理:
    ByteBuf 提供了对内存的细粒度控制,可以有效地管理分配和释放内存。
    它使用了池化技术(PooledByteBufAllocator),可以复用 ByteBuf 实例,减少垃圾回收的压力。节约内存,减少内存溢出的可能。
  • 高效操作:
    ByteBuf 提供了许多方法来高效地读写数据,包括直接操作内存的方法,减少了不必要的数据拷贝。
    支持多种操作方式,如读取、写入、切片等,使开发者可以灵活地处理数据。
    很多地方体现零拷贝(减少内存复制,提高性能),例如 slice、duplicate、CompositeByteBuf
  • 跨平台兼容:
    ByteBuf 设计时考虑到了跨平台的兼容性,能够在不同的操作系统和硬件上高效运行。
  • 安全性:
    ByteBuf 提供了安全的 API,可以防止越界读写操作,提高了代码的健壮性。

ByteBuf的组成

ByteBuf 由四部分组成
在这里插入图片描述
最开始读写指针都在 0 位置。

ByteBuf最大容量为整数的最大值,也就是20亿。
ByteBuf有读指针和写指针,一开始读、写指针都是在下标为0位置,写入数据时写指针向后移动,读取数据时读指针向后移动,开头到读指针的区域为废弃字节。

ByteBuf 的生命周期

  • 分配:通过 ByteBufAllocator 创建 ByteBuf。
  • 使用:读写数据,处理事件。
  • 释放:使用完毕后,通过 release() 方法释放 ByteBuf。

ByteBuf 相关api

1. ByteBuf 的创建

import io.netty.buffer.ByteBuf;
import io.netty.buffer.ByteBufAllocator;
import static io.netty.buffer.ByteBufUtil.appendPrettyHexDump;
import static io.netty.util.internal.StringUtil.NEWLINE;public class TestByteBuf {public static void main(String[] args) {
//        ByteBuf buf = ByteBufAllocator.DEFAULT.buffer();
//        System.out.println(buf);//PooledUnsafeDirectByteBuf(ridx: 0, widx: 0, cap: 256)
//        StringBuilder sb = new StringBuilder();
//        for (int i = 0; i < 300; i++) {
//            sb.append("a");
//        }
//        buf.writeBytes(sb.toString().getBytes());
//        System.out.println(buf);//PooledUnsafeDirectByteBuf(ridx: 0, widx: 300, cap: 512)//        ByteBuf buf = ByteBufAllocator.DEFAULT.heapBuffer();//class io.netty.buffer.PooledUnsafeHeapByteBuf 采用池化的堆内存ByteBuf buf = ByteBufAllocator.DEFAULT.buffer();//class io.netty.buffer.PooledUnsafeDirectByteBuf 采用池化的直接内存System.out.println(buf.getClass());System.out.println(buf.maxCapacity());log(buf);StringBuilder sb = new StringBuilder();for (int i = 0; i < 32; i++) {sb.append("a");}buf.writeBytes(sb.toString().getBytes());log(buf);}public static void log(ByteBuf buffer) {int length = buffer.readableBytes();int rows = length / 16 + (length % 15 == 0 ? 0 : 1) + 4;StringBuilder buf = new StringBuilder(rows * 80 * 2).append("read index:").append(buffer.readerIndex()).append(" write index:").append(buffer.writerIndex()).append(" capacity:").append(buffer.capacity()).append(NEWLINE);appendPrettyHexDump(buf, buffer);System.out.println(buf.toString());}
}

实际开发中通常会在ChannelInboundHandlerAdapter的channelRead()中,所以建议使用 ctx.alloc() 创建 ByteBuf。

new ServerBootstrap().group(new NioEventLoopGroup()).channel(NioServerSocketChannel.class).childHandler(new ChannelInitializer<NioSocketChannel>() {@Overrideprotected void initChannel(NioSocketChannel ch) {ch.pipeline().addLast(new ChannelInboundHandlerAdapter(){@Overridepublic void channelRead(ChannelHandlerContext ctx, Object msg) {ByteBuf buffer = (ByteBuf) msg;System.out.println(buffer.toString(Charset.defaultCharset()));// 建议使用 ctx.alloc() 创建 ByteBufByteBuf response = ctx.alloc().buffer();response.writeBytes(buffer);ctx.writeAndFlush(response);}});}}).bind(8080);

2. 直接内存 vs 堆内存

可以使用下面的代码来创建池化基于堆的 ByteBuf

ByteBuf buffer = ByteBufAllocator.DEFAULT.heapBuffer(10);

也可以使用下面的代码来创建池化基于直接内存的 ByteBuf

ByteBuf buffer = ByteBufAllocator.DEFAULT.directBuffer(10);
  • 直接内存创建和销毁的代价昂贵,但读写性能高(少一次内存复制),适合配合池化功能一起用
  • 直接内存对 GC 压力小,因为这部分内存不受 JVM 垃圾回收的管理,但也要注意及时主动释放

直接内存使用的是系统内存(减少内存复制),直接内存的读写效率高于堆内存
减少内存复制:磁盘读取文件时,可以将数据读入系统内存,系统内存通过直接内存的方式映射到java内存中

3. 池化 vs 非池化

池化的最大意义在于可以重用 ByteBuf,优点有

  • 没有池化,则每次都得创建新的 ByteBuf 实例,这个操作对直接内存代价昂贵,就算是堆内存,也会增加 GC 压力
  • 有了池化,则可以重用池中 ByteBuf 实例,并且采用了与 jemalloc 类似的内存分配算法提升分配效率
  • 高并发时,池化功能更节约内存,减少内存溢出的可能

池化功能是否开启,可以通过下面的系统环境变量来设置

-Dio.netty.allocator.type={unpooled|pooled}
  • 4.1 以后,非 Android 平台默认启用池化实现,Android 平台启用非池化实现
  • 4.1 之前,池化功能还不成熟,默认是非池化实现

池化类似数据库连接池

在运行设置中配置是否使用池化功能(也可以配置到环境变量中)
在这里插入图片描述

public static void main(String[] args) {ByteBuf buf = ByteBufAllocator.DEFAULT.buffer();System.out.println(buf.getClass());
}

输出:

class io.netty.buffer.UnpooledByteBufAllocator$InstrumentedUnpooledUnsafeNoCleanerDirectByteBuf

4. ByteBuf写入

写入 byte 类型:

buffer.writeByte(byte value);

写入 short 类型:

buffer.writeShort(short value);

写入 int 类型:

buffer.writeInt(int value);

写入 long 类型:

buffer.writeLong(long value);

写入 float 类型:

buffer.writeFloat(float value);

写入 double 类型:

buffer.writeDouble(double value);

写入字符串(指定字符集):

buffer.writeCharSequence(CharSequence sequence, Charset charset);

此方法将字符串转换为字节序列,并按照指定的字符集编码写入缓冲区。

写入 byte[] 数组:

buffer.writeBytes(byte[] src);
buffer.writeBytes(byte[] src, int offset, int length);

这些方法用于将一个字节数组的一部分或全部写入缓冲区。

写入 ByteBuffer:

buffer.writeBytes(ByteBuffer src);

此方法用于将一个 ByteBuffer 的内容写入缓冲区。

写入 CharSequence:

buffer.writeCharSequence(CharSequence sequence, Charset charset);

此方法用于将 CharSequence 对象按照指定的字符集编码后写入缓冲区。

写入另一个 ByteBuf:

buffer.writeBytes(ByteBuf src);
buffer.writeBytes(ByteBuf src, int length);
buffer.writeBytes(ByteBuf src, int index, int length);

这些方法用于将另一个 ByteBuf 的内容写入当前 ByteBuf。

写入其他对象

buffer.writeObject(Object obj);

此方法用于写入一个实现了 Externalizable 接口的对象。请注意,此方法不是 ByteBuf 的标准方法,而是依赖于序列化机制,因此在使用时需要注意兼容性和效率问题。

代码示例

public static void main(String[] args) {ByteBuf buffer = ByteBufAllocator.DEFAULT.buffer(10);//先写入 4 个字节buffer.writeBytes(new byte[]{1, 2, 3, 4});log(buffer);System.out.println();System.out.println("---------------------------------------------------");System.out.println();//再写入一个 int 整数,也是 4 个字节buffer.writeInt(5);log(buffer);
}public static void log(ByteBuf buffer) {int length = buffer.readableBytes();int rows = length / 16 + (length % 15 == 0 ? 0 : 1) + 4;StringBuilder buf = new StringBuilder(rows * 80 * 2).append("read index:").append(buffer.readerIndex()).append(" write index:").append(buffer.writerIndex()).append(" capacity:").append(buffer.capacity()).append(NEWLINE);appendPrettyHexDump(buf, buffer);System.out.println(buf.toString());
}

输出:

read index:0 write index:4 capacity:10+-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04                                     |....            |
+--------+-------------------------------------------------+----------------+---------------------------------------------------read index:0 write index:8 capacity:10+-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 00 00 00 05                         |........        |
+--------+-------------------------------------------------+----------------+

5. ByteBuffer扩容

以上代码中再写入一个 int 整数时,容量不够了(初始容量是 10),这时会引发扩容

   public static void main(String[] args) {ByteBuf buffer = ByteBufAllocator.DEFAULT.buffer(10);
//先写入 4 个字节buffer.writeBytes(new byte[]{1, 2, 3, 4});log(buffer);System.out.println();System.out.println("---------------------------------------------------");System.out.println();
//再写入一个 int 整数,也是 4 个字节buffer.writeInt(5);log(buffer);System.out.println("---------------------------------------------------");buffer.writeInt(6);log(buffer);}

输出

read index:0 write index:4 capacity:10+-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04                                     |....            |
+--------+-------------------------------------------------+----------------+---------------------------------------------------read index:0 write index:8 capacity:10+-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 00 00 00 05                         |........        |
+--------+-------------------------------------------------+----------------+
---------------------------------------------------
read index:0 write index:12 capacity:64+-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 00 00 00 05 00 00 00 06             |............    |
+--------+-------------------------------------------------+----------------+

扩容规则是

  • 如何写入后数据大小未超过 512,则选择下一个 16 的整数倍,例如写入后大小为 12 ,则扩容后 capacity 是 16
  • 如果写入后数据大小超过 512,则选择下一个 2^n,例如写入后大小为 513,则扩容后 capacity 是 210=1024(29=512 已经不够了)
  • 扩容不能超过 max capacity 会报错

6. ByteBuf 读取

例如读了 4 次,每次一个字节

	public static void main(String[] args) {
//        ByteBuf buf = ByteBufAllocator.DEFAULT.buffer();
//        System.out.println(buf.getClass());ByteBuf buffer = ByteBufAllocator.DEFAULT.buffer(10);
//先写入 4 个字节buffer.writeBytes(new byte[]{1, 2, 3, 4});log(buffer);System.out.println();System.out.println("---------------------------------------------------");System.out.println();
//再写入一个 int 整数,也是 4 个字节buffer.writeInt(5);log(buffer);System.out.println("---------------------------------------------------");buffer.writeInt(6);log(buffer);System.out.println("读取");System.out.println(buffer.readByte());System.out.println(buffer.readByte());System.out.println(buffer.readByte());System.out.println(buffer.readByte());//读指针移动log(buffer);}

读过的内容,就属于废弃部分了,再读只能读那些尚未读取的部分

读取
1
2
3
4
read index:4 write index:12 capacity:64+-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 00 00 00 05 00 00 00 06                         |........        |
+--------+-------------------------------------------------+----------------+

如果需要重复读取 int 整数 5,怎么办?
可以在 read 前先做个标记 mark

System.out.println("重复读取");
buffer.markReaderIndex();
System.out.println(buffer.readInt());//读取4个字节
log(buffer);
System.out.println("重置到标记位置 reset");
buffer.resetReaderIndex();
log(buffer);

输出

重复读取
5
read index:8 write index:12 capacity:64+-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 00 00 00 06                                     |....            |
+--------+-------------------------------------------------+----------------+
重置到标记位置 reset
read index:4 write index:12 capacity:64+-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 00 00 00 05 00 00 00 06                         |........        |
+--------+-------------------------------------------------+----------------+

还有种办法是采用 get 开头的一系列方法,这些方法不会改变 read index(读指针)

7. retain() & release()

由于 Netty 中有堆外内存的 ByteBuf 实现,堆外内存最好是手动来释放,而不是等 GC 垃圾回收。

  • UnpooledHeapByteBuf 使用的是 JVM 内存,只需等 GC 回收内存即可
  • UnpooledDirectByteBuf 使用的就是直接内存了,需要特殊的方法来回收内存
  • PooledByteBuf 和它的子类使用了池化机制,需要更复杂的规则来回收内存

回收内存的源码实现,请关注下面方法的不同实现protected abstract void deallocate()

Netty 这里采用了引用计数法来控制回收内存,每个 ByteBuf 都实现了 ReferenceCounted 接口

  • 每个 ByteBuf 对象的初始计数为 1
  • 调用 release 方法计数减 1,如果计数为 0,ByteBuf 内存被回收
  • 调用 retain 方法计数加 1,表示调用者没用完之前,其它 handler 即使调用了 release 也不会造成回收
  • 当计数为 0 时,底层内存会被回收,这时即使 ByteBuf 对象还在,其各个方法均无法正常使用

谁来负责 release 呢?
一般情况下

ByteBuf buf = ...
try {...
} finally {buf.release();
}

因为 pipeline 的存在,一般需要将 ByteBuf 传递给下一个 ChannelHandler,如果在 finally 中 release 了,就失去了传递性(当然,如果在这个 ChannelHandler 内这个 ByteBuf 已完成了它的使命,那么便无须再传递)
基本规则是,谁是最后使用者,谁负责 release,详细分析如下

  • 起点,对于 NIO 实现来讲,在 io.netty.channel.nio.AbstractNioByteChannel.NioByteUnsafe#read 方法中首次创建 ByteBuf 放入 pipeline(pipeline.fireChannelRead(byteBuf))
  • 入站 ByteBuf 处理原则
    • 对原始 ByteBuf 不做处理,调用 ctx.fireChannelRead(msg) 向后传递,这时无须 release
    • 将原始 ByteBuf 转换为其它类型的 Java 对象,这时 ByteBuf 就没用了,必须 release
    • 如果不调用 ctx.fireChannelRead(msg) 向后传递,那么也必须 release
    • 注意各种异常,如果 ByteBuf 没有成功传递到下一个 ChannelHandler,必须 release
    • 假设消息一直向后传,那么 TailContext 会负责释放未处理消息(原始的 ByteBuf)
  • 出站 ByteBuf 处理原则
    • 出站消息最终都会转为 ByteBuf 输出,一直向前传,由 HeadContext flush 后 release
  • 异常处理原则
    • 有时候不清楚 ByteBuf 被引用了多少次,但又必须彻底释放,可以循环调用 release 直到返回 true

TailContext 释放未处理消息逻辑

在Pipeline中,消息从head()到入站处理器一直传到tail,tail的实现类就是TailContext类。而tail因为要收尾所以也要拿到入站消息,因此也实现了ChannelInboundHandler接口。
以下为TailContext的相关源码
io.netty.channel.DefaultChannelPipeline.TailContext#channelRead

final class TailContext extends AbstractChannelHandlerContext implements ChannelInboundHandler {...//和入站处理器一样,观察channelRead()@Overridepublic void channelRead(ChannelHandlerContext ctx, Object msg) {onUnhandledInboundMessage(ctx, msg);}...   
}


io.netty.channel.DefaultChannelPipeline#onUnhandledInboundMessage(io.netty.channel.ChannelHandlerContext, java.lang.Object)

protected void onUnhandledInboundMessage(ChannelHandlerContext ctx, Object msg) {onUnhandledInboundMessage(msg);//下面是日志,可以忽略if (logger.isDebugEnabled()) {logger.debug("Discarded message pipeline : {}. Channel : {}.",ctx.pipeline().names(), ctx.channel());}
}


io.netty.channel.DefaultChannelPipeline#onUnhandledInboundMessage(java.lang.Object)

protected void onUnhandledInboundMessage(Object msg) {try {logger.debug("Discarded inbound message {} that reached at the tail of the pipeline. " +"Please check your pipeline configuration.", msg);} finally {ReferenceCountUtil.release(msg);}
}


io.netty.util.ReferenceCountUtil#release(java.lang.Object)

public static boolean release(Object msg) {//判断是否为ByteBuf,是ByteBuf才会释放if (msg instanceof ReferenceCounted) {//释放消息return ((ReferenceCounted) msg).release();}return false;
}

HeadContext

而head则处理入站消息,消息向后传。同时head也会作为出站处理器,出战的消息从tail一直传给head
io.netty.channel.DefaultChannelPipeline.HeadContext#write

final class HeadContext extends AbstractChannelHandlerContextimplements ChannelOutboundHandler, ChannelInboundHandler {...//和出站处理器一样,观察write()@Overridepublic void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) {unsafe.write(msg, promise);}...                                                            
}


io.netty.channel.AbstractChannel.AbstractUnsafe#write

@Override
public final void write(Object msg, ChannelPromise promise) {assertEventLoop();//出站缓冲区ChannelOutboundBuffer outboundBuffer = this.outboundBuffer;if (outboundBuffer == null) {// If the outboundBuffer is null we know the channel was closed and so// need to fail the future right away. If it is not null the handling of the rest// will be done in flush0()// See https://github.com/netty/netty/issues/2362safeSetFailure(promise, newClosedChannelException(initialCloseCause));// release message now to prevent resource-leak//释放ReferenceCountUtil.release(msg);return;}...
}


io.netty.util.ReferenceCountUtil#release(java.lang.Object)

public static boolean release(Object msg) {if (msg instanceof ReferenceCounted) {return ((ReferenceCounted) msg).release();}return false;
}

8. ByteBuf.slice()

【零拷贝】的体现之一,对原始 ByteBuf 进行切片成多个 ByteBuf,切片后的 ByteBuf 并没有发生内存复制,还是使用原始 ByteBuf 的内存,切片后的 ByteBuf 维护独立的 read,write 指针。
在这里插入图片描述
例,原始 ByteBuf 进行一些初始操作

调用有参的slice()

import io.netty.buffer.ByteBuf;
import io.netty.buffer.ByteBufAllocator;public class Test03Slice {public static void main(String[] args) {ByteBuf buf = ByteBufAllocator.DEFAULT.buffer(10);buf.writeBytes(new byte[]{'a','b','c','d','e','f','g','h','i','j'});log(buf);// 在切片过程中,没有发生数据复制ByteBuf f1 = buf.slice(0, 5);f1.retain();//ByteBuf.retain()方法将引用计数器加1,‌表示该ByteBuf被另一个对象所持有// 'a','b','c','d','e', 'x'ByteBuf f2 = buf.slice(5, 5);f2.retain();//作用:让切片自己去做释放操作,不让原始的ByteBuf释放影响切片log(f1);log(f2);
//        f1.writeByte('x');//f1无法写入,因为会跟f2冲突System.out.println("释放原有 byteBuf 内存");buf.release();log(f1);System.out.println("========================");f1.setByte(0, 'b');//允许替换log(f1);//bbcdelog(buf);//buf中也替换为bbcdefghijf1.release();//切片自己释放ByteBuff2.release();}public static void log(ByteBuf buffer) {int length = buffer.readableBytes();int rows = length / 16 + (length % 15 == 0 ? 0 : 1) + 4;StringBuilder buf = new StringBuilder(rows * 80 * 2).append("read index:").append(buffer.readerIndex()).append(" write index:").append(buffer.writerIndex()).append(" capacity:").append(buffer.capacity()).append(NEWLINE);appendPrettyHexDump(buf, buffer);System.out.println(buf.toString());}
}

输出:

read index:0 write index:10 capacity:10+-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 62 63 64 65 66 67 68 69 6a                   |abcdefghij      |
+--------+-------------------------------------------------+----------------+
read index:0 write index:5 capacity:5+-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 62 63 64 65                                  |abcde           |
+--------+-------------------------------------------------+----------------+
read index:0 write index:5 capacity:5+-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 66 67 68 69 6a                                  |fghij           |
+--------+-------------------------------------------------+----------------+
释放原有 byteBuf 内存
read index:0 write index:5 capacity:5+-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 62 63 64 65                                  |abcde           |
+--------+-------------------------------------------------+----------------+
========================
read index:0 write index:5 capacity:5+-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 62 62 63 64 65                                  |bbcde           |
+--------+-------------------------------------------------+----------------+
read index:0 write index:10 capacity:10+-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 62 62 63 64 65 66 67 68 69 6a                   |bbcdefghij      |
+--------+-------------------------------------------------+----------------+

调用无参的ByteBuf.slice()

import io.netty.buffer.ByteBuf;
import io.netty.buffer.ByteBufAllocator;
import io.netty.buffer.ByteBufUtil;
public class Test03Slice2 {public static void main(String[] args) {ByteBuf origin = ByteBufAllocator.DEFAULT.buffer(10);origin.writeBytes(new byte[]{1, 2, 3, 4});origin.readByte();System.out.println(ByteBufUtil.prettyHexDump(origin));System.out.println();System.out.println("--------------------------------------------------------------");System.out.println();/*** 这时调用 slice 进行切片,无参 slice 是从原始 ByteBuf 的 read index 到 write index* 之间的内容进行切片,切片后的 max capacity 被固定为这个区间的大小,因此不能追加 write*/System.out.println("origin.slice()");ByteBuf slice = origin.slice();System.out.println(ByteBufUtil.prettyHexDump(slice));// slice.writeByte(5); 如果执行,会报 IndexOutOfBoundsException 异常System.out.println();System.out.println("--------------------------------------------------------------");System.out.println();System.out.println("origin.readByte()");//原始 ByteBuf 再次读操作(又读了一个字节)origin.readByte();System.out.println(ByteBufUtil.prettyHexDump(origin));System.out.println();System.out.println("--------------------------------------------------------------");System.out.println();System.out.println("slice不受影响,因为它有独立的读写指针");//注意这时的 slice 不受影响,因为它有独立的读写指针System.out.println(ByteBufUtil.prettyHexDump(slice));System.out.println();System.out.println("--------------------------------------------------------------");System.out.println();System.out.println("slice发生变化");//如果 slice 的内容发生了更改slice.setByte(2, 5);System.out.println(ByteBufUtil.prettyHexDump(slice));System.out.println();System.out.println("--------------------------------------------------------------");System.out.println();System.out.println("原始 ByteBuf 也会受影响");//这时,原始 ByteBuf 也会受影响,因为底层都是同一块内存System.out.println(ByteBufUtil.prettyHexDump(origin));}
}

输出:

         +-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 02 03 04                                        |...             |
+--------+-------------------------------------------------+----------------+--------------------------------------------------------------origin.slice()+-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 02 03 04                                        |...             |
+--------+-------------------------------------------------+----------------+--------------------------------------------------------------origin.readByte()+-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 03 04                                           |..              |
+--------+-------------------------------------------------+----------------+--------------------------------------------------------------slice不受影响,因为它有独立的读写指针+-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 02 03 04                                        |...             |
+--------+-------------------------------------------------+----------------+--------------------------------------------------------------slice发生变化+-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 02 03 05                                        |...             |
+--------+-------------------------------------------------+----------------+--------------------------------------------------------------原始 ByteBuf 也会受影响+-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 03 05                                           |..              |
+--------+-------------------------------------------------+----------------+

9. ByteBuf.duplicate()

【零拷贝】的体现之一,就好比截取了原始 ByteBuf 所有内容,并且没有 max capacity 的限制,也是与原始 ByteBuf 使用同一块底层内存,只是读写指针是独立的
在这里插入图片描述

duplicate() 方法的特点

  1. 共享内容:duplicate() 创建的新 ByteBuf 与原 ByteBuf 共享相同的数据区域,这意味着修改其中一个 ByteBuf 的内容会影响另一个 ByteBuf。
  2. 独立指针:新创建的 ByteBuf 有自己的读写指针,这意味着你可以独立地操作这两个 ByteBuf 的读写位置,而不影响另一个。
  3. 引用计数不变:duplicate() 方法不会增加 ByteBuf 的引用计数,所以释放任何一个 ByteBuf 都会导致原始数据的释放。

代码示例

    public static void main(String[] args) {// 创建一个 ByteBufByteBuf originalBuf = Unpooled.buffer(1024);// 写入一些数据originalBuf.writeBytes(new byte[]{0x01, 0x02, 0x03, 0x04});// 创建一个副本ByteBuf duplicateBuf = originalBuf.duplicate();// 修改原始 ByteBuf 的内容originalBuf.setByte(0, (byte) 0xAA);// 输出两个 ByteBuf 的内容System.out.println(ByteBufUtil.prettyHexDump(originalBuf));System.out.println(ByteBufUtil.prettyHexDump(duplicateBuf));// 释放 ByteBuforiginalBuf.release();}

输出

         +-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| aa 02 03 04                                     |....            |
+--------+-------------------------------------------------+----------------++-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| aa 02 03 04                                     |....            |
+--------+-------------------------------------------------+----------------+

10. ByteBuf.copy()

copy() 方法,用于创建当前 ByteBuf 的一个副本。这个副本包含从当前的 readerIndex 到 writerIndex 之间的所有数据的一个新拷贝,而不是像 duplicate() 方法那样共享原有 ByteBuf 的数据。因此,copy() 方法创建的是一个全新的 ByteBuf,与原 ByteBuf 不共享数据,修改一个 ByteBuf 的内容不会影响另一个。
会将底层内存数据进行深拷贝,因此无论读写,都与原始 ByteBuf 无关。

copy() 方法的特点

  1. 独立的数据副本:copy() 方法创建的新 ByteBuf 包含了从 readerIndex 到 writerIndex 之间的所有数据的一个新拷贝,这意味着修改其中一个 ByteBuf 的内容不会影响另一个 ByteBuf。
  2. 独立的读写指针:新创建的 ByteBuf 有自己的读写指针(readerIndex 和 writerIndex),因此可以独立地操作这两个 ByteBuf 的读写位置。
  3. 引用计数不变:copy() 方法不会增加 ByteBuf 的引用计数,因为它是创建了一个新的 ByteBuf。
  4. 新的内存分配:copy() 方法会创建一个新的内存分配,用于存放从原 ByteBuf 中复制的数据。

代码示例

import io.netty.buffer.ByteBuf;
import io.netty.buffer.ByteBufUtil;
import io.netty.buffer.Unpooled;public class ByteBufCopyExample {public static void main(String[] args) {// 创建一个 ByteBufByteBuf originalBuf = Unpooled.buffer(1024);// 写入一些数据originalBuf.writeBytes(new byte[]{0x01, 0x02, 0x03, 0x04});// 设置读写指针originalBuf.readerIndex(0);originalBuf.writerIndex(4);// 创建一个副本ByteBuf copyBuf = originalBuf.copy();System.out.println("Original ByteBuf content: " + originalBuf.toString());//ByteBuf(ridx: 0, widx: 4, cap: 1024)System.out.println("Copy ByteBuf content    : " + copyBuf.toString());    //ByteBuf(ridx: 0, widx: 4, cap: 4)// 修改原始 ByteBuf 的内容originalBuf.setByte(0, (byte) 0xAA);// 输出两个 ByteBuf 的内容System.out.println(ByteBufUtil.prettyHexDump(originalBuf));// aa 02 03 04System.out.println(ByteBufUtil.prettyHexDump(copyBuf));// 01 02 03 04// 读取数据byte originalByte = originalBuf.readByte();byte copyByte = copyBuf.readByte();System.out.println("Original Byte read: " + originalByte);System.out.println("Copy Byte read: " + copyByte);// 释放 ByteBuforiginalBuf.release();copyBuf.release();}
}

输出

Original ByteBuf content: UnpooledByteBufAllocator$InstrumentedUnpooledUnsafeHeapByteBuf(ridx: 0, widx: 4, cap: 1024)
Copy ByteBuf content    : UnpooledByteBufAllocator$InstrumentedUnpooledUnsafeHeapByteBuf(ridx: 0, widx: 4, cap: 4)+-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| aa 02 03 04                                     |....            |
+--------+-------------------------------------------------+----------------++-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04                                     |....            |
+--------+-------------------------------------------------+----------------+
Original Byte read: -86
Copy Byte read: 1

11. CompositeByteBuf

【零拷贝】的体现之一,可以将多个 ByteBuf 合并为一个逻辑上的 ByteBuf,避免拷贝

示例如下

import io.netty.buffer.ByteBuf;
import io.netty.buffer.ByteBufAllocator;
import io.netty.buffer.CompositeByteBuf;import static io.netty.buffer.ByteBufUtil.appendPrettyHexDump;
import static io.netty.util.internal.StringUtil.NEWLINE;/*** 2.36*/
public class Test04CompositeByteBuf {public static void main(String[] args) {ByteBuf buf1 = ByteBufAllocator.DEFAULT.buffer();buf1.writeBytes(new byte[]{1, 2, 3, 4, 5});ByteBuf buf2 = ByteBufAllocator.DEFAULT.buffer();buf2.writeBytes(new byte[]{6, 7, 8, 9, 10});//将多个 ByteBuf 合并为一个的 ByteBuf//方法1:这种方法不太好,因为进行了数据的内存复制操作
//        ByteBuf buffer = ByteBufAllocator.DEFAULT.buffer();
//        buffer.writeBytes(buf1).writeBytes(buf2);
//        log(buffer);//方法2:可以将多个 ByteBuf 合并为一个逻辑上的 ByteBuf,避免拷贝CompositeByteBuf buffer1 = ByteBufAllocator.DEFAULT.compositeBuffer();buffer1.addComponents( buf1, buf2);//注意:addComponent()和addComponents()不带increaseWriterIndex参数不会自动改变读写指针log(buffer1);//read index:0 write index:0 capacity:10/**不带参数:默认情况下,addComponents() 不会自动更新 buf1 和 buf2 的读写指针。结果:buffer1 的读指针为 0,写指针也为 0,容量为 10。这意味着 buf1 和 buf2 的数据虽然被合并,但它们的读写指针没有变化。*/CompositeByteBuf buffer2 = ByteBufAllocator.DEFAULT.compositeBuffer();buffer2.addComponents(true, buf1, buf2);log(buffer2);//read index:0 write index:10 capacity:10/**带参数 true:表示在添加组件时更新 buf1 和 buf2 的写指针到最大值。结果:buffer2 的读指针为 0,写指针为 10,容量为 10。这意味着 buf1 和 buf2 的数据被合并,并且它们的写指针被更新到了各自的最大值。总结:buffer1:读写指针未更新。buffer2:读写指针已更新,便于后续连续读取*/}public static void log(ByteBuf buffer) {int length = buffer.readableBytes();int rows = length / 16 + (length % 15 == 0 ? 0 : 1) + 4;StringBuilder buf = new StringBuilder(rows * 80 * 2).append("read index:").append(buffer.readerIndex()).append(" write index:").append(buffer.writerIndex()).append(" capacity:").append(buffer.capacity()).append(NEWLINE);appendPrettyHexDump(buf, buffer);System.out.println(buf.toString());}
}

输出

read index:0 write index:0 capacity:10read index:0 write index:10 capacity:10+-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 05 06 07 08 09 0a                   |..........      |
+--------+-------------------------------------------------+----------------+

CompositeByteBuf 是一个组合的 ByteBuf,它内部维护了一个 Component 数组,每个 Component 管理一个 ByteBuf,记录了这个 ByteBuf 相对于整体偏移量等信息,代表着整体中某一段的数据。

  • 优点,对外是一个虚拟视图,组合这些 ByteBuf 不会产生内存复制
  • 缺点,复杂了很多,多次操作会带来性能的损耗

12. Unpooled

Unpooled 是一个工具类,类如其名,提供了非池化的 ByteBuf 创建、组合、复制等操作
这里仅介绍其跟【零拷贝】相关的 wrappedBuffer 方法,可以用来包装 ByteBuf

ByteBuf buf1 = ByteBufAllocator.DEFAULT.buffer(5);
buf1.writeBytes(new byte[]{1, 2, 3, 4, 5});
ByteBuf buf2 = ByteBufAllocator.DEFAULT.buffer(5);
buf2.writeBytes(new byte[]{6, 7, 8, 9, 10});// 当包装 ByteBuf 个数超过一个时, 底层使用了 CompositeByteBuf
ByteBuf buf3 = Unpooled.wrappedBuffer(buf1, buf2);
System.out.println(ByteBufUtil.prettyHexDump(buf3));

输出

         +-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 05 06 07 08 09 0a                   |..........      |
+--------+-------------------------------------------------+----------------+

也可以用来包装普通字节数组,底层也不会有拷贝操作

ByteBuf buf4 = Unpooled.wrappedBuffer(new byte[]{1, 2, 3}, new byte[]{4, 5, 6});
System.out.println(buf4.getClass());
System.out.println(ByteBufUtil.prettyHexDump(buf4));

输出

class io.netty.buffer.CompositeByteBuf+-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 05 06                               |......          |
+--------+-------------------------------------------------+----------------+

总结ByteBuf

  • 池化 - 可以重用池中 ByteBuf 实例,更节约内存,减少内存溢出的可能
  • 读写指针分离,不需要像 ByteBuffer 一样切换读写模式
  • 可以自动扩容
  • 支持链式调用,使用更流畅
  • 很多地方体现零拷贝(减少内存复制,提高性能),例如 slice、duplicate、CompositeByteBuf

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1535420.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

2024最新版零基础学习Modbus通信协议(保姆级教程)

合集 - 上位机开发(2) 1.零基础学习Modbus通信协议09-13 2.RS485与ModbusRTU09-10 收起 大家好&#xff01;我是付工。 2012年开始接触Modbus协议&#xff0c;至今已经有10多年了&#xff0c;从开始的懵懂&#xff0c;到后来的顿悟&#xff0c;再到现在的开悟&#xff0c;…

YOLOv8改进 | 融合改进 | C2f融合重写星辰网络⭐以及CAA【二次融合 +​ CVPR2024】

秋招面试专栏推荐 &#xff1a;深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转 &#x1f4a1;&#x1f4a1;&#x1f4a1;本专栏所有程序均经过测试&#xff0c;可成功执行&#x1f4a1;&#x1f4a1;&#x1f4a1; 专栏目录 &#xff1a;《YOLOv8改进有效…

win10安装JDK12并配置环境

Java SE 、Java EE和Java ME的区别 Java SE&#xff08;Standard Edition&#xff09;‌ 是Java语言的标准版&#xff0c;也被称为Java平台标准版。 Java EE&#xff08;Enterprise Edition&#xff09;‌ 是基于Java SE构建的企业版&#xff0c;专门用于开发企业级应用。它扩…

ESP32聊天机器人之一

想做情感陪伴机器人&#xff0c;看到B站有个项目很有趣&#xff0c;使用一块esp32复刻了B站MeteWu的ESP32大模型聊天项目。 自己做了一些修改&#xff0c;加了一些简单的表情&#xff0c;角色扮演&#xff0c;切换大模型和温湿度传感器等功能。可以用于玩具&#xff0c;聊天机…

【React源码解析】深入理解react时间切片和fiber架构

时间切片 假如React一个更新需要耗时200ms&#xff0c;我们可以将其拆分为40个5ms的更新&#xff08;后续会讲到如何拆分&#xff09;&#xff0c;然后每一帧里只花5ms来执行更新。那么&#xff0c;每一帧里不就剩余16.7 - 5 11.7ms的时间可以进行用户事件&#xff0c;渲染等…

立足本土,面向全球 | 全视通闪耀亮相Medical Fair Asia新加坡医疗展

Medical Fair Asia是亚洲地区最大的医疗设备、医疗器械和医疗技术展览会之一&#xff0c;自1997年创办以来&#xff0c;每两年在新加坡举办一次。该展会不仅是新加坡医疗行业交流的龙头平台&#xff0c;也是亚洲乃至全球医疗企业和专业人士共聚一堂、展示最新产品和技术的重要舞…

非关系型数据库Redis

文章目录 一&#xff0c;关系型数据库和非关系型数据可区别1.关系型数据库2.非关系型数据库3.区别3.1存储方式3.2扩展方式3.2事务性的支持 二&#xff0c;非关系型数据为什么产生三&#xff0c;Redis1.Redis是什么2.Redis优点3.Redis适用范围4. Redis 快的原因4.1 基于内存运行…

某讯/企鹅滑块验证码逆向(一)

文章目录 免责声明前言请求分析collect参数 总结 免责声明 本文章中所有内容仅供学习交流使用&#xff0c;不用于其他任何目的&#xff0c;不提供完整代码&#xff0c;抓包内容、敏感网址、数据接口等均已做脱敏处理&#xff0c;严禁用于商业用途和非法用途&#xff0c;否则由…

面试爱考 | 设计模式

一、概述二、创建型 1. 单例&#xff08;Singleton&#xff09; IntentClass DiagramImplementationExamplesJDK 2. 简单工厂&#xff08;Simple Factory&#xff09; IntentClass DiagramImplementation 3. 工厂方法&#xff08;Factory Method&#xff09; IntentClass Diagr…

C/C++教程学习视频网盘资源分享

正如大家所了解的&#xff0c;C语言和C是两种编程语言&#xff0c;它们有一些相似之处&#xff0c;也有一些明显的区别。今天与大家一起来探讨、学习和回顾一下&#xff0c;希望对正在学习或准备学习编程语言的小伙伴&#xff0c;能有帮助哦&#xff01; C/C区别之处&#xff…

Linux环境使用Git同步教程

&#x1f4d6; 前言&#xff1a;由于CentOS 7已于2024年06月30日停止维护&#xff0c;为了避免操作系统停止维护带来的影响&#xff0c;我们将把系统更换为Ubuntu并迁移数据&#xff0c;在此之前简要的学习Git的上传下载操作。 目录 &#x1f552; 1. 连接&#x1f558; 1.1 配…

路由策略原理与配置

&#x1f423;个人主页 可惜已不在 &#x1f424;这篇在这个专栏 华为_可惜已不在的博客-CSDN博客 &#x1f425;有用的话就留下一个三连吧&#x1f63c; 目录 一. 原理概述 二. 实验目的 实验内容 实验拓扑 实验配置 三. 实验结果 一. 原理概述 路由策略Route-P…

【docker】docker 关键技术 —— 镜像制作

docker 镜像制作 镜像制作及原因Docker 镜像制作方式快照方式制作镜像制作命令 Dockerfile 制作镜像Dockerfile 是什么Dockerfile 格式为什么需要 Dockerfilegitee 详细使用 Dockerfile 教程 镜像制作及原因 镜像制作是因为某种需求&#xff0c;官方的镜像无法满足需求&#x…

Docker基本使用(持续更新中)

1 常用命令 1.1保存镜像到本地 命令如下: docker save -o nginx.tar nginx:latest 举例 结果&#xff1a;在当前目录下多了一个nginx.tar的包 1.2加载本地镜像 命令如下&#xff1a; docker load -i nginx.tar 举例&#xff1a; 查看当前镜像是没有nginx的 加载本地镜…

C++入门基础知识67(高级)——【关于C++ 文件和流】

成长路上不孤单&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a; 【14后&#x1f60a;///C爱好者&#x1f60a;///持续分享所学&#x1f60a;///如有需要欢迎收藏转发///&#x1f60a;】 今日分享关于C 文件和流的相关内容&#xff01; 关于…

数据库索引底层数据结构之B+树MySQL中的页索引分类【纯理论干货,面试必备】

目录 1、索引简介 1.1 什么是索引 1.2 使用索引的原因 2、索引中数据结构的设计 —— B树 2.1 哈希 2.2 二叉搜索树 2.3 B树 2.4 最终选择之——B树 2.4.1 B树与B树的对比(面向索引)【面试题】 3、MySQL中的页 3.1 页的使用原因 3.2 页的结构 3.2.1 页文件头和页文件…

【批量图片发票识别表格】批量识别发票明细导出Excel表格,批量识别扫描发票,批量识别拍照发票,发票识别改名

我们在生活中有很多发票要处理&#xff0c;有的是扫描的图片&#xff0c;有的是拍照的图片&#xff0c;需要将这些发票的信息导出整理成Excel表格&#xff0c;手打一两张还可以&#xff0c;数量大是不太现实的&#xff0c;那么今天教下大家如何快速的将这些发票整理下Excel表格…

基于Java、SpringBoot、Vue的加油站管理系统设计

摘要 本系统是一个基于Java、SpringBoot和Vue的加油站管理系统。它旨在提高加油站的运营效率&#xff0c;优化客户服务体验&#xff0c;并通过数据分析支持更精准的业务决策。该系统包括用户管理、汽油管理、站点管理等功能模块。通过这些功能&#xff0c;管理员可以方便地管理…

Chrome扩展程序上架全流程

1. 开发一个扩展 首先开发好一个扩展&#xff0c; 在构建之后压缩打包为 zip 格式的文件 2. 注册开发者账号 首次需要创建谷歌开发者账号&#xff0c;需要一次性收取5美元的注册费 注册步骤 打开注册链接&#xff0c;如下图所示&#xff0c;同意协议点击支付注册费 需要…

GDPU Vue前端框架开发 计数器

计数器算不到你双向绑定的进度。 重要的更新公告 &#xff01;&#xff01;&#xff01;GDPU的小伙伴&#xff0c;感谢大家的支持&#xff0c;希望到此一游的帅哥美女能有所帮助。本学期的前端框架及移动应用&#xff0c;采用专栏订阅量达到50才开始周更了哦( •̀ .̫ •́ )✧…