约束优化算法(optimtool.constrain)

import optimtool as oo
from optimtool.base import np, sp, plt
pip install optimtool>=2.4.2

约束优化算法(optimtool.constrain)

import optimtool.constrain as oc
oc.[方法名].[函数名]([目标函数], [参数表], [等式约束表], [不等式约数表], [初始迭代点])
import optimtool.constrain as oc
f, x1, x2 = sp.symbols("f x1 x2")
f = (x1 - 2)**2 + (x2 - 1)**2
c1 = x1 - x2 - 1
c2 = 0.25*x1**2 - x2 - 1

等式约束(equal)

oc.equal.[函数名]([目标函数], [参数表], [等式约束表], [初始迭代点])
方法头解释
penalty_quadratice(funcs: FuncArray, args: FuncArray, cons: FuncArray, x_0: PointArray, verbose: bool=False, draw: bool=True, output_f: bool=False, method: str=“newton”, sigma: float=10, p: float=2, epsk: float=1e-4, epsilon: float=1e-4, k: int=0) -> OutputType增加二次罚项
lagrange_augmentede(funcs: FuncArray, args: ArgArray, cons: FuncArray, x_0: PointArray, verbose: bool=False, draw: bool=True, output_f: bool=False, method: str=“newton”, lamk: float=6, sigma: float=10, p: float=2, etak: float=1e-4, epsilon: float=1e-6, k: int=0) -> OutputType增广拉格朗日乘子法
oc.equal.penalty_quadratice(f, (x1, x2), c1, (1, 0.5), verbose=True)
(1, 0.5)	1.25	0
[2. 1.]	4.930380657631324e-32	1
(1.9999999999999998, 1.0)	4.930380657631324e-32	2

在这里插入图片描述

((1.9999999999999998, 1.0), 2)

不等式约束(unequal)

oc.unequal.[函数名]([目标函数], [参数表], [不等式约束表], [初始迭代点])
方法头解释
penalty_quadraticu(funcs: FuncArray, args: ArgArray, cons: FuncArray, x_0: PointArray, verbose: bool=False, draw: bool=True, output_f: bool=False, method: str=“newton”, sigma: float=10, p: float=0.4, epsk: float=1e-4, epsilon: float=1e-10, k: int=0) -> OutputType增加二次罚项
lagrange_augmentedu(funcs: FuncArray, args: ArgArray, cons: FuncArray, x_0: PointArray, verbose: bool=False, draw: bool=True, output_f: bool=False, method: str=“newton”, muk: float=10, sigma: float=8, alpha: float=0.2, beta: float=0.7, p: float=2, eta: float=1e-1, epsilon: float=1e-4, k: int=0) -> OutputType增广拉格朗日乘子法
oc.unequal.lagrange_augmentedu(f, (x1, x2), c2, (1.5, 0.5), verbose=True)
(1.5, 0.5)	0.5	0
(1.5, 0.5)	0.5	1
[2. 1.]	0.0	2
(2.0, 1.0)	0.0	3
(2.0, 1.0)	0.0	4

((2.0, 1.0), 4)

混合等式约束(mixequal)

oc.mixequal.[函数名]([目标函数], [参数表], [等式约束表], [不等式约束表], [初始迭代点])
方法头解释
penalty_quadraticm(funcs: FuncArray, args: ArgArray, cons_equal: FuncArray, cons_unequal: FuncArray, x_0: PointArray, verbose: bool=False, draw: bool=True, output_f: bool=False, method: str=“newton”, sigma: float=10, p: float=0.6, epsk: float=1e-6, epsilon: float=1e-10, k: int=0) -> OutputType增加二次罚项
penalty_L1(funcs: FuncArray, args: ArgArray, cons_equal: FuncArray, cons_unequal: FuncArray, x_0: PointArray, verbose: bool=False, draw: bool=True, output_f: bool=False, method: str=“newton”, sigma: float=1, p: float=0.6, epsk: float=1e-6, epsilon: float=1e-10, k: int=0) -> OutputTypeL1精确罚函数法
lagrange_augmentedm(funcs: FuncArray, args: ArgArray, cons_equal: FuncArray, cons_unequal: FuncArray, x_0: PointArray, verbose: bool=False, draw: bool=True, output_f: bool=False, method: str=“newton”, lamk: float=6, muk: float=10, sigma: float=8, alpha: float=0.5, beta: float=0.7, p: float=2, eta: float=1e-3, epsilon: float=1e-4, k: int=0) -> OutputType增广拉格朗日乘子法
oc.mixequal.penalty_L1(f, (x1, x2), c1, c2, (1.5, 0.5), verbose=True)
(1.5, 0.5)	0.5	0
[2.5 0.5]	0.5	1
[1.47826087 1.6       ]	0.6322117202268434	2
[2.18 0.82]	0.06480000000000004	3
[1.892 1.108]	0.023328000000000043	4
[2.0648 0.9352]	0.008398079999999992	5
[1.96112 1.03888]	0.003023308800000004	6
[2.023328 0.976672]	0.001088391167999991	7
[1.9860032 1.0139968]	0.00039182082047999555	8
[2.00839808 0.99160192]	0.000141055495372801	9
[1.99496115 1.00503885]	5.0779978334209926e-05	10
[2.00302331 0.99697669]	1.8280792200315036e-05	11
[1.99818601 1.00181399]	6.581085192114058e-06	12
[2.00108839 0.99891161]	2.369190669160674e-06	13
[1.99934697 1.00065303]	8.529086408979587e-07	14
[2.00039182 0.99960818]	3.0704711072324775e-07	15
[1.99976491 1.00023509]	1.105369598604005e-07	16
[2.00014106 0.99985894]	3.9793305549762975e-08	17
(2.000141055495373, 0.9998589445046272)	3.9793305549762975e-08	18

在这里插入图片描述

((2.000141055495373, 0.9998589445046272), 18)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/149927.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

VulnHub Earth

一、信息收集 1.主机和端口扫描 nmap -sS 192.168.103.1/24 发现443端口有DNS解析,在hosts文件中添加DNS解析: 2.收集earth.local信息 发现有Previous Messages 37090b59030f11060b0a1b4e0000000000004312170a1b0b0e4107174f1a0b044e0a000202134e0a161…

Electron笔记

基础环境搭建 官网:https://www.electronjs.org/zh/ 这一套笔记根据这套视频而写的 创建项目 方式一: 官网点击GitHub往下拉找到快速入门就能看到下面这几个命令了 git clone https://github.com/electron/electron-quick-start //克隆项目 cd electron-quick-start //…

前端position: absolute是相对于谁定位的?

1. 当祖父元素是relative定位, 父元素是absolute定位, 子元素也是absolute定位 <script setup></script><template><div class"relative"><p class"absolute1">absolute1<p class"absolute2">absolute2<…

计算机竞赛 题目:基于python的验证码识别 - 机器视觉 验证码识别

文章目录 0 前言1 项目简介2 验证码识别步骤2.1 灰度处理&二值化2.2 去除边框2.3 图像降噪2.4 字符切割2.5 识别 3 基于tensorflow的验证码识别3.1 数据集3.2 基于tf的神经网络训练代码 4 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 基于pyt…

使用ebpf 监控linux内核中的nat转换

1.简介 Linux NAT&#xff08;Network Address Translation&#xff09;转换是一种网络技术&#xff0c;用于将一个或多个私有网络内的IP地址转换为一个公共的IP地址&#xff0c;以便与互联网通信。 在k8s业务场景中&#xff0c;业务组件之间的关系十分复杂. 由于 Kubernete…

gin 框架的 JSON Render

gin 框架的 JSON Render gin 框架默认提供了很多的渲染器&#xff0c;开箱即用&#xff0c;非常方便&#xff0c;特别是开发 Restful 接口。不过它提供了好多种不同的 JSON Render&#xff0c;那么它们的区别是什么呢&#xff1f; // JSON contains the given interface obje…

了解基于Elasticsearch 的站内搜索,及其替代方案

对于一家公司而言&#xff0c;数据量越来越多&#xff0c;如果快速去查找这些信息是一个很难的问题&#xff0c;在计算机领域有一个专门的领域IR&#xff08;Information Retrival&#xff09;研究如何获取信息&#xff0c;做信息检索。在国内的如百度这样的搜索引擎也属于这个…

oracle OCP OCM MySQL OCP认证难吗?

好多人在初次考OCP时&#xff0c;不知道如何选择&#xff0c;本文让姚远ACE老师为大家总结一下吧&#xff01; 选择OCP认证时要注意的问题&#xff1a; 1&#xff0c;授课老师师资经验&#xff08;非常重要&#xff09; 2&#xff0c;课程大纲 3&#xff0c;试听课程 4&am…

PHP 行事准则:allow_url_fopen 与 allow_url_include

文章目录 参考环境allow_url_fopenallow_url_fopen 配置项操作远程文件file 协议 allow_url_includeallow_url_include 配置项 allow_url_include 与 allow_url_fopen区别联系默认配置配置项关闭所导致异常运行时配置ini_set()限制 参考 项目描述搜索引擎Bing、GoogleAI 大模型…

安全性算法

目录 一、安全性算法 二、基础术语 三、对称加密与非对称加密 四、数字签名 五、 哈希算法 六、哈希算法碰撞与溢出处理 一、安全性算法 安全性算法的必要性&#xff1a; 安全性算法的必要性是因为在现代数字化社会中&#xff0c;我们经常需要传输、存储和处理敏感的数据…

运营人必备这个微信运营工具

微信管理系统CRM在各行各业都有应用的场景---IT互联网、制造业、商业服务、金融投资、教育培训、房产家装、电商、政务等20行业领域均得到广泛应用。 微信CRM管理系统的主要功能&#xff1a; 多个微信号聚合聊天&#xff1a;解决多个微信来回切换&#xff0c;换着手着手机的麻烦…

【C++】位图

位图 1. 位图1.1 位图的概念1.1 位图的实现1.3 位图的应用 2. 布隆过滤器2.1 概念2.2 模拟实现2.3 优点和缺点2.4 应用场景2.5 哈希切分的应用 1. 位图 1.1 位图的概念 位图&#xff0c;就是用二进制位来表示数据的某种状态&#xff0c;例如判断数据是否存在&#xff0c;二进…

教你拥有一个自己的QQ机器人!0基础超详细保姆级教学!基于NoneBot2 Windows端搭建QQ机器人

0.序言 原文链接&#xff1a;教你本地化部署一个QQ机器人本教程主要面向Windows系统用户教程从0开始全程详细指导&#xff0c;0基础萌新请放心食用&#x1f355;如果你遇到了问题&#xff0c;请仔细检查是否哪一步有遗漏。如果你确定自己的操作没问题&#xff0c;可以到原文链…

信看课堂-厘米GNSS定位

我们常常说GPS 定位&#xff0c;不过定位远不止GPS定位&#xff0c;通过本节课程&#xff0c;我们将会了解到&#xff0c;原来GPS只是定位的一种&#xff1a; GNSS概述 不同的GNSS系统使用不同的频段来传输导航信号。以下是一些主要的GNSS系统及其相应的频段&#xff0c;用表…

苹果系统_安装matplotlib__pygame,以pycharm导入模块

为了更便捷、连贯的进行python编程学习&#xff0c;尽量在开始安装python软件时&#xff0c;将编辑器、模块一并安装好&#xff0c;这样能避免以后版本冲突的问题。小白在开始安装pycharm、pip、matplotlib往往会遇到一些问题&#xff0c;文中列示其中部分bug&#xff0c;供大家…

1200*C. Challenging Cliffs(模拟构造贪心)

Problem - 1537C - Codeforces Challenging Cliffs - 洛谷 解析&#xff1a; 排序数组&#xff0c;然后找出间隔最短的两个相邻的数 a&#xff0c;b&#xff0c;c&#xff0c;d&#xff0c;e&#xff0c;f &#xff08;假设b&#xff0c;c为差最小的两个数&#xff09;。 然后…

Python无废话-办公自动化Excel格式美化

设置字体 在使用openpyxl 处理excel 设置格式&#xff0c;需要导入Font类&#xff0c;设置Font初始化参数&#xff0c;常见参数如下&#xff1a; 关键字参数 数据类型 描述 name 字符串 字体名称&#xff0c;如Calibri或Times New Roman size 整型 大小点数 bold …

【一、灵犀考试系统项目设计、框架搭建】

一、创建数据库 1、打开power designer&#xff0c;新建数据库模型 2、新建数据表&#xff0c;以及关系 【注意】 图片的类型有两种&#xff1a;varbinary 和 image varbinary : 二进制字节流&#xff0c;可以自动控制长度 image : 最大可放2G图片 3、创建数据库&#…

创新家庭办公室:打造完美工作空间的秘诀

一个精心策划的家庭办公室有很多好处&#xff0c;何不把临时工作区升级改造为你的专属工作区呢&#xff0c;还能为这些至关重要的区域注入新的活力。 创造多用途的起居室&#xff1a;我们大多数人都不曾拥有一个可以完全根据工作需求设计的独立家庭办公室——所以有时候要找到…

QT:鼠标画线(双画布)

widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QPoint> //点 #include <QMouseEvent> //鼠标事件 #include <QPaintEvent> //绘图事件class Widget : public QWidget {Q_OBJECTpublic:Widget(QWidget *parent 0);~Wi…