DPDK系列之三十三DPDK并行机制的底层支持

一、背景介绍

在前面介绍了DPDK中的上层对并行的支持,特别是对多核的支持。但是,大家都知道,再怎么好的设计和架构,再优秀的编码,最终都要落到硬件和固件对整个上层应用的支持。单纯的硬件好处理,一个核不够多个核,在可能的情况下把CPU的频率增加,加大缓存等等。在现有水平的范围内,这些都是可以比较容易做到的。
但是另外一个,就是在CPU上如何最终运行指令(也可以叫做固件设计),这个就需要设计人员动脑子了。一般来说,IPC(Instruction Per Clock,一个时钟周期内执行的指令数量,可不要看成进程间通信)的数量越高,CPU运行性能越高(频率和核数相同)。
现代CPU基本使用了越标量(superscalar)体系结构,通过以空间换时间的方式实行了指令级并行运算。不同的架构的处理器,可能在硬件设计本身有所不同,但在追求并行度上,原理基本相同。
在前面的多核编程中,介绍过几种指令,目前常用的基本以SIMD(单指令流多数据流)和MIMD(多指令流多数据流)为主。后者一般是多核和多CPU(当然更高层次的多计算机也算),但在分析本文中更倾向的是SIMD,毕竟一个核心能处理多少更能体现性能和效率。
SIMD其实很容易理解,可以认为是一种并行的批处理。原来只能一次取一条指令处理一条数据,这次可以一条指令处理多条数据。举个最简单的例子,加指令,需要有两次读操作数,而如果使用SIMD,则一次就可以都读进来。其后的处理周期也是如此,那么效率至少增加了一倍。
而这些指令设计和处理会形成一个指令集,它的发展也有一个过程,intel的SIMD指令集主要有MMX, SSE, AVX, AVX-512,主流就是SSE/AVX。AMD的比较复杂,有兴趣可以查找看一下。

二、DPDK中的应用

在DPDK中对SIMD的应用体现在数据的处理上,DPDK提供了一个化化的拷贝memcpy函数,它充分利用了SIMD指令集:

static __rte_always_inline void *
rte_memcpy(void *dst, const void *src, size_t n)
{if (!(((uintptr_t)dst | (uintptr_t)src) & ALIGNMENT_MASK))return rte_memcpy_aligned(dst, src, n);elsereturn rte_memcpy_generic(dst, src, n);
}
static __rte_always_inline void *
rte_memcpy_aligned(void *dst, const void *src, size_t n)
{void *ret = dst;/* Copy size < 16 bytes */if (n < 16) {return rte_mov15_or_less(dst, src, n);}/* Copy 16 <= size <= 32 bytes */if (n <= 32) {rte_mov16((uint8_t *)dst, (const uint8_t *)src);rte_mov16((uint8_t *)dst - 16 + n,(const uint8_t *)src - 16 + n);return ret;}/* Copy 32 < size <= 64 bytes */if (n <= 64) {rte_mov32((uint8_t *)dst, (const uint8_t *)src);rte_mov32((uint8_t *)dst - 32 + n,(const uint8_t *)src - 32 + n);return ret;}/* Copy 64 bytes blocks */for (; n >= 64; n -= 64) {rte_mov64((uint8_t *)dst, (const uint8_t *)src);dst = (uint8_t *)dst + 64;src = (const uint8_t *)src + 64;}/* Copy whatever left */rte_mov64((uint8_t *)dst - 64 + n,(const uint8_t *)src - 64 + n);return ret;
}
static __rte_always_inline void *
rte_memcpy_generic(void *dst, const void *src, size_t n)
{__m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8;void *ret = dst;size_t dstofss;size_t srcofs;/*** Copy less than 16 bytes*/if (n < 16) {return rte_mov15_or_less(dst, src, n);}/*** Fast way when copy size doesn't exceed 512 bytes*/if (n <= 32) {rte_mov16((uint8_t *)dst, (const uint8_t *)src);rte_mov16((uint8_t *)dst - 16 + n, (const uint8_t *)src - 16 + n);return ret;}if (n <= 48) {rte_mov32((uint8_t *)dst, (const uint8_t *)src);rte_mov16((uint8_t *)dst - 16 + n, (const uint8_t *)src - 16 + n);return ret;}if (n <= 64) {rte_mov32((uint8_t *)dst, (const uint8_t *)src);rte_mov16((uint8_t *)dst + 32, (const uint8_t *)src + 32);rte_mov16((uint8_t *)dst - 16 + n, (const uint8_t *)src - 16 + n);return ret;}if (n <= 128) {goto COPY_BLOCK_128_BACK15;}if (n <= 512) {if (n >= 256) {n -= 256;rte_mov128((uint8_t *)dst, (const uint8_t *)src);rte_mov128((uint8_t *)dst + 128, (const uint8_t *)src + 128);src = (const uint8_t *)src + 256;dst = (uint8_t *)dst + 256;}
COPY_BLOCK_255_BACK15:if (n >= 128) {n -= 128;rte_mov128((uint8_t *)dst, (const uint8_t *)src);src = (const uint8_t *)src + 128;dst = (uint8_t *)dst + 128;}
COPY_BLOCK_128_BACK15:if (n >= 64) {n -= 64;rte_mov64((uint8_t *)dst, (const uint8_t *)src);src = (const uint8_t *)src + 64;dst = (uint8_t *)dst + 64;}
COPY_BLOCK_64_BACK15:if (n >= 32) {n -= 32;rte_mov32((uint8_t *)dst, (const uint8_t *)src);src = (const uint8_t *)src + 32;dst = (uint8_t *)dst + 32;}if (n > 16) {rte_mov16((uint8_t *)dst, (const uint8_t *)src);rte_mov16((uint8_t *)dst - 16 + n, (const uint8_t *)src - 16 + n);return ret;}if (n > 0) {rte_mov16((uint8_t *)dst - 16 + n, (const uint8_t *)src - 16 + n);}return ret;}/*** Make store aligned when copy size exceeds 512 bytes,* and make sure the first 15 bytes are copied, because* unaligned copy functions require up to 15 bytes* backwards access.*/dstofss = (uintptr_t)dst & 0x0F;if (dstofss > 0) {dstofss = 16 - dstofss + 16;n -= dstofss;rte_mov32((uint8_t *)dst, (const uint8_t *)src);src = (const uint8_t *)src + dstofss;dst = (uint8_t *)dst + dstofss;}srcofs = ((uintptr_t)src & 0x0F);/*** For aligned copy*/if (srcofs == 0) {/*** Copy 256-byte blocks*/for (; n >= 256; n -= 256) {rte_mov256((uint8_t *)dst, (const uint8_t *)src);dst = (uint8_t *)dst + 256;src = (const uint8_t *)src + 256;}/*** Copy whatever left*/goto COPY_BLOCK_255_BACK15;}/*** For copy with unaligned load*/MOVEUNALIGNED_LEFT47(dst, src, n, srcofs);/*** Copy whatever left*/goto COPY_BLOCK_64_BACK15;
}

更多相关的代码在rte_memcpy.h和rte_memcpy.c中,注意,它包含不同CPU架构平台的多个版本,不要搞混。
从上面的代码可以看到,影响拷贝速度的有以下几点:
1、字节对齐和数据的加载存储。
这个大家都明白,除了字节对齐速度加快外,而且DPDK中还对不同的字节对齐以及长度进行了控制,充分发挥SIMD的优势(说直白一点就是在条件允许的情况下,一次拷贝数量多【16字节:128位】,这个和平台支持有关)
2、函数和库调用开销,库函数需要调用过程,这个也浪费时间。这个库调用过程在编译选择优化的过程中,优化难度也比较大,不如在DPDK中直接调用,特别是使用
static __rte_always_inline(静态内联)时,这在网上有很多优化的比较,自己也可以试一试。
3、整体上来说,数据量越大,上面的优化越优势越大;否则优势则不明显。
上述的比较是针对库glibc以及DPDK相比而言的,至于个人优化过的则不在此范畴之内。另外,随着技术的进步,如果用高版本的glibc并开启优化后,可能效果差别也不大,这个没有进行比较。
有兴趣可以看看rte_mov256等几个函数。
需要说明的是,对于某一类函数,没有普遍最优之说。只有场景条件限制下的最合适。也就是说,DPDK的拷贝函数不代表此函数比glibc中的拷贝函数优秀,只是说明此函数在DPDK的应用场景下更合适。
最后总结一下,针对内存拷贝的优化点:
1、减少拷贝过程中的附加处理如字节对齐
2、在平台允许情况下使用最大带宽(拷贝最大数量)
3、使用平坦顺序内存并使用分支预测(减少分支跳转,如是否有范围重叠等)
4、有可能的情况下使用non-temporal访存执令
5、使用加速拷贝的一些指令(string操作指令等)。
6、处理大内存(M以上)和小内存(K以下)的不同场景(这个在一些常用框架中都会处理)

三、总结

性能和效率的提升,是一个系统工程。它可能会从一个点开始,然后不断的影响别的点,然后这些点又互相影响,最后蔓延到整个系统,形成一个量变到质变的过程。计算机应用也不外乎这样。
DPDK中通过Linux内核的一些设计(如大页),通过一种工程优化的手段来提高网络通信的效率,但反过来,内核也会借鉴DPDK的一些特点来吸收到内核中去。同样,DPDK的出现对硬件本身的设计也提出了虚拟化的相关等要求。硬件水平的提高又可以提高DPDK的性能。
国内的缺少的不是后面的一系列动作,缺少的恰恰是开始那个点,那个用于爆发的创新点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/149797.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

@SpringBootApplication剖析

一、前言 在SpringBoot项目中启动类必须加一个注解SpringBootApplication&#xff0c;今天我们来剖析SpringBootApplication这个注解到底做了些什么。 二、SpringBootApplication简单分析 进入SpringBootApplication源代码如下&#xff1a; 可以看出SpringBootApplication是…

el-date-picker增加默认值 修改样式

预期效果 默认是这样的 但希望是直接有一个默认的当天日期&#xff0c;并且字体颜色啥的样式也要修改&#xff08;在这里假设今天是2023/10/6 功能实现 踩了坑挺多坑的&#xff0c;特此记录 官方文档 按照官方的说明&#xff0c;给v-model绑定一个字符串就可以了 在j…

关联规则挖掘(下):数据分析 | 数据挖掘 | 十大算法之一

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ &#x1f434;作者&#xff1a;秋无之地 &#x1f434;简介&#xff1a;CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作&#xff0c;主要擅长领域有&#xff1a;爬虫、后端、大数据…

uniapp 实现地图头像上的水波纹效果

最近实现了uniapp 地图头像水波纹的效果&#xff0c;话不多说&#xff0c;先来看看视频效果吧&#xff1a;链接 在这里具体的代码就不放出来了&#xff0c;还是利用了uniapp的 uni.createAnimation 方法&#xff0c;因为cover-view 不支持一些css 的动画效果&#xff0c;所以这…

文举论金:非农到来!黄金原油全面走势分析策略独家指导

市场没有绝对&#xff0c;涨跌没有定势&#xff0c;所以&#xff0c;对市场行情的涨跌平衡判断就是你的制胜法宝。欲望&#xff01;有句意大利谚语&#xff1a;让金钱成为我们忠心耿耿的仆人&#xff0c;否则&#xff0c;它就会成为一个专横跋扈的主人。空头&#xff0c;多头都…

24 mysql all 查询

前言 这里主要是 探究一下 explain $sql 中各个 type 诸如 const, ref, range, index, all 的查询的影响, 以及一个初步的效率的判断 这里会调试源码来看一下 各个类型的查询 需要 lookUp 的记录 以及 相关的差异 此系列文章建议从 mysql const 查询 开始看 测试表结构…

基于可解释性特征矩阵与稀疏采样全局特征组合的人体行为识别

论文还未发表&#xff0c;不细说&#xff0c;欢迎讨论。 Title: A New Solution to Skeleton-Based Human Action Recognition via the combination usage of explainable feature extraction and sparse sampling global features. Abstract: With the development of deep …

集群服务器

文章目录 项目名:实现集群服务器技术栈通过这项目你学到(或者复习到)实现功能编码环境json环境muduo库boost库MySql数据库登录mysql&#xff1a;查看mysql服务开启了没有&#xff1f;mysql的服务器及开发包库chat&#xff0c;表 allgroup friend groupuser offlinemessage user…

记录本地部署Stable-diffusion所依赖的repositories和一些插件

今天按照其他文章的步骤拉取好了https://github.com/AUTOMATIC1111/stable-diffusion-webui后&#xff0c;点击webui-user.bat后发现&#xff0c;repositories和models还得慢慢拉取&#xff0c;好吧&#xff0c;GitHub Desktop&#xff0c;启动&#xff01; BLIP: https://git…

vuejs中使用axios时如何追加数据

前言 在vuejs中使用axios时&#xff0c;有时候需要追加数据,比如,移动端下拉触底加载,分页加载,滑动滚动条,等等,这时候就需要追加数据了,下面我们来演示下. 代码演示 <template><div><div><el-button type"primary" click"handleBtnGetJ…

【设计模式】访问者模式

文章目录 1.访问者模式定义2.访问者模式的角色3.访问者模式实战案例3.1.场景说明3.2.UML类图3.3.代码实现 4.访问者模式优缺点5.访问者模式适用场景6.访问者模式总结 主页传送门&#xff1a;&#x1f481; 传送 1.访问者模式定义 访问者模式&#xff08;Visitor Pattern&#x…

cartographer-(0)-ubuntu(20.04)-环境安装

1.安装 ROS wiki.ros.org 1.1修改镜像源&#xff1a; 到网站上找与操作系统相匹配的镜像源 ubuntu | 镜像站使用帮助 | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror # 默认注释了源码镜像以提高 apt update 速度&#xff0c;如有需要可自行取消注释 deb htt…

JavaScript系列从入门到精通系列第十六篇:JavaScript使用函数作为属性以及枚举对象中的属性

文章目录 前言 1&#xff1a;对象属性可以是函数 2&#xff1a;对象属性函数被称为方法 一&#xff1a;枚举对象中的属性 1&#xff1a;for...in 枚举对象中的属性 前言 1&#xff1a;对象属性可以是函数 对象的属性值可以是任何的数据类型&#xff0c;也可以是函数。 v…

去雨去雪去雾算法之本地与服务器的TensorBoard使用教程

在进行去雨去雾去雪算法实验时&#xff0c;需要注意几个参数设置&#xff0c;num_workers只能设置为0&#xff0c;否则会报各种稀奇古怪的错误。 本地使用TensorBoard 此外&#xff0c;发现生成的文件是events.out.tfevents格式的&#xff0c;查询了一番得知该文件是通过Tens…

云原生边缘计算KubeEdge安装配置

1. K8S集群部署&#xff0c;可以参考如下博客 请安装k8s集群&#xff0c;centos安装k8s集群 请安装k8s集群&#xff0c;ubuntu安装k8s集群 2.安装kubEedge 2.1 编辑kube-proxy使用ipvs代理 kubectl edit configmaps kube-proxy -n kube-system #修改kube-proxy#大约在40多行…

lv7 嵌入式开发-网络编程开发 12 IP协议与ethernet协议

目录 1 IP协议作用和意义 2 IP数据报首部格式 3 IP数据报分片 4 以太网协议作用和意义&#xff08;链路层&#xff09; 5 练习 1 IP协议作用和意义 IP网的意义 当互联网上的主机进行通信时&#xff0c;就好像在一个网络上通信一样&#xff0c;看不见互连的各具体的网络异…

Vue中实现自定义编辑邮件发送到指定邮箱(纯前端实现)

formspree里面注册账号 注册完成后进入后台新建项目并且新建表单 这一步完成之后你将得到一个地址 最后就是在项目中请求这个地址 关键代码如下&#xff1a; submitForm() {this.fullscreenLoading true;this.$axios({method: "post",url: "https://xxxxxxx…

golang gin框架1——简单案例以及api版本控制

gin框架 gin是golang的一个后台WEB框架 简单案例 package mainimport ("github.com/gin-gonic/gin""net/http" )func main() {r : gin.Default()r.GET("/ping", func(c *gin.Context) {//以json形式输出&#xff0c;还可以xml protobufc.JSON…

【数据结构初阶】六、线性表中的队列(C语言 -- 链式结构实现队列)

相关代码gitee自取&#xff1a; C语言学习日记: 加油努力 (gitee.com) 接上期&#xff1a; 【数据结构初阶】五、线性表中的栈&#xff08;C语言 -- 顺序表实现栈&#xff09;_高高的胖子的博客-CSDN博客 1 . 队列&#xff08;Queue&#xff09; 队列的概念和结构&#xf…

mysql面试题16:说说分库与分表的设计?常用的分库分表中间件有哪些?分库分表可能遇到的问题有哪些?

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:说说分库与分表的设计? 在MySQL中,分库与分表是常用的数据库水平扩展技术,可以提高数据库的吞吐量和扩展性。下面将具体讲解MySQL中分库与分表…