(南京观海微电子)——MOS管原理及应用区别

MOS管:

        全称为金属氧化物半导体场效应管(Metal Oxide Semiconductor Field Effect Transistor),也被称为MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)。它是一种半导体器件,常用于电子电路中的开关、放大、稳压等功能。 

 

 

 

一、MOS管特点

1、高输入阻抗:MOS管的输入电阻非常高,因此可以减小输入信号源的功耗。

2、低输出阻抗:MOS管的输出电阻非常低,可以提供较大的输出电流。

3、低功耗:MOS管的静态功耗非常低,几乎不需要电流输入。

4、高速度:MOS管的开关速度非常快,可以实现高频率的开关操作。

5、可控性强:MOS管的导通和截止可以通过控制栅极电压来实现,具有很好的可控性。

二、MOS管的结构图与工作原理

其结构示意图:

mos管的结构图

        MOS管主要由源极(Source)、漏极(Drain)、栅极(Gate)和绝缘层(Oxide)组成。当栅极电压为零时,绝缘层会阻止漏极和源极之间的电流流动。当栅极电压加正偏时,形成了栅源电压,绝缘层下的沟道区域会形成N型或P型导电层,允许电流流过。栅极电压越高,导电层越宽,电流越大。通过调节栅极电压,可以控制MOS管的导通和截止

电极 D(Drain) 称为漏极,相当双极型三极管的集电极;

电极G(Gate) 称为栅极,相当于的基极;

电极S(Source)称为源极,相当于发射极。

三、MOS管分类

1、N沟道MOS管(NMOS):沟道区域为N型半导体,栅极电压为正时导通。

2、P沟道MOS管(PMOS):沟道区域为P型半导体,栅极电压为负时导通。

3、增强型MOS管(Enhancement MOSFET):栅极电压为正时导通,栅极电压为零时截止。

4、耗尽型MOS管(Depletion MOSFET):栅极电压为负时导通,栅极电压为零时截止。

5、压控型MOS管(VDMOS):用于功率放大器,具有较低的导通电阻。

mos管的结构图-N沟道增强型MOS场效应管结构

        mos管的结构图,N沟道增强型MOS场效应管结构如下文。在一块掺杂浓度较低的P型硅衬底上,制作两个高掺杂浓度的N+区,并用金属铝引出两个电极,分别作漏极d和源极s。然后在半导体表面覆盖一层很薄的二氧化硅(SiO2)绝缘层,在漏——源极间的绝缘层上再装上一个铝电极,作为栅极g。衬底上也引出一个电极B,这就构成了一个N沟道增强型MOS管。MOS管的源极和衬底通常是接在一起的(大多数管子在出厂前已连接好)。它的栅极与其它电极间是绝缘的。

        图(a)、(b)分别是它的结构示意图和代表符号。代表符号中的箭头方向表示由P(衬底)指向N(沟道)。P沟道增强型MOS管的箭头方向与上述相反,如图(c)所示。

mos管的结构图

mos管的结构图-N沟道增强型MOS场效应管的工作原理

mos管的结构图,N沟道增强型MOS场效应管的工作原理。

(1)vGS对iD及沟道的控制作用

① vGS=0 的情况

从图1(a)可以看出,增强型MOS管的漏极d和源极s之间有两个背靠背的PN结。当栅——源电压vGS=0时,即使加上漏——源电压vDS,而且不论vDS的极性如何,总有一个PN结处于反偏状态,漏——源极间没有导电沟道,所以这时漏极电流iD≈0。

② vGS>0 的情况

        若vGS>0,则栅极和衬底之间的SiO2绝缘层中便产生一个电场。电场方向垂直于半导体表面的由栅极指向衬底的电场。这个电场能排斥空穴而吸引电子。

        排斥空穴:使栅极附近的P型衬底中的空穴被排斥,剩下不能移动的受主离子(负离子),形成耗尽层。吸引电子:将 P型衬底中的电子(少子)被吸引到衬底表面。

(2)导电沟道的形成:

        当vGS数值较小,吸引电子的能力不强时,漏——源极之间仍无导电沟道出现,如图1(b)所示。vGS增加时,吸引到P衬底表面层的电子就增多,当vGS达到某一数值时,这些电子在栅极附近的P衬底表面便形成一个N型薄层,且与两个N+区相连通,在漏——源极间形成N型导电沟道,其导电类型与P衬底相反,故又称为反型层,如图1(c)所示。vGS越大,作用于半导体表面的电场就越强,吸引到P衬底表面的电子就越多,导电沟道越厚,沟道电阻越小。

 开始形成沟道时的栅——源极电压称为开启电压,用VT表示。

上面讨论的N沟道MOS管在vGS<VT时,不能形成导电沟道,管子处于截止状态。只有当vGS≥VT时,才有沟道形成。这种必须在vGS≥VT时才能形成导电沟道的MOS管称为增强型MOS管。沟道形成以后,在漏——源极间加上正向电压vDS,就有漏极电流产生。

VDS对ID的影响

mos管的结构图

        如图(a)所示,当vGS>VT且为一确定值时,漏——源电压vDS对导电沟道及电流iD的影响与结型场效应管相似。

        漏极电流iD沿沟道产生的电压降使沟道内各点与栅极间的电压不再相等,靠近源极一端的电压最大,这里沟道最厚,而漏极一端电压最小,其值为VGD=vGS-vDS,因而这里沟道最薄。但当vDS较小(vDS)。

        随着vDS的增大,靠近漏极的沟道越来越薄,当vDS增加到使VGD=vGS-vDS=VT(或vDS=vGS-VT)时,沟道在漏极一端出现预夹断,如图2(b)所示。再继续增大vDS,夹断点将向源极方向移动,如图2(c)所示。由于vDS的增加部分几乎全部降落在夹断区,故iD几乎不随vDS增大而增加,管子进入饱和区,iD几乎仅由vGS决定。

mos管的结构图-N沟道耗尽型MOS场效应管的基本结构

mos管的结构图(N沟道耗尽型基本结构)

mos管的结构图

(1)结构:

N沟道耗尽型MOS管与N沟道增强型MOS管基本相似。

(2)区别:

耗尽型MOS管在vGS=0时,漏——源极间已有导电沟道产生,而增强型MOS管要在vGS≥VT时才出现导电沟道。

(3)原因:

制造N沟道耗尽型MOS管时,在SiO2绝缘层中掺入了大量的碱金属正离子Na+或K+(制造P沟道耗尽型MOS管时掺入负离子),如图1(a)所示,因此即使vGS=0时,在这些正离子产生的电场作用下,漏——源极间的P型衬底表面也能感应生成N沟道(称为初始沟道),只要加上正向电压vDS,就有电流iD。

如果加上正的vGS,栅极与N沟道间的电场将在沟道中吸引来更多的电子,沟道加宽,沟道电阻变小,iD增大。反之vGS为负时,沟道中感应的电子减少,沟道变窄,沟道电阻变大,iD减小。当vGS负向增加到某一数值时,导电沟道消失,iD趋于零,管子截止,故称为耗尽型。沟道消失时的栅-源电压称为夹断电压,仍用VP表示。与N沟道结型场效应管相同,N沟道耗尽型MOS管的夹断电压VP也为负值,但是,前者只能在vGS<0的情况下工作。而后者在vGS=0,vGS>0。

P沟道耗尽型MOSFET

P沟道MOSFET的工作原理与N沟道MOSFET完全相同,只不过导电的载流子不同,供电电压极性不同而已。这如同双极型三极管有NPN型和PNP型一样。

 

四、MOS管常见故障及预防措施

1、过热故障:MOS管在工作过程中可能会因为过载或电流过大而发生过热。预防措施包括合理设计散热系统、使用散热器等措施提高散热效果。

2、静电击穿:静电放电可能会对MOS管产生破坏性影响。预防措施包括在操作过程中使用防静电手套、使用防静电工作台等。

3、漏电流增大:MOS管的漏电流增大可能是由于栅极和漏极之间的绝缘层损坏导致。预防措施包括避免过高的栅极电压和过高的工作温度。

4、导通电阻增大:MOS管的导通电阻增大可能是由于导通通道区域的杂质或损坏导致。预防措施包括避免过高的工作电压和过高的工作温度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1474186.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

图论·Day01

P3371 P4779 P3371 【模板】单源最短路径&#xff08;弱化版&#xff09; 注意的点&#xff1a; 边有重复&#xff0c;选择最小边&#xff01;对于SPFA算法容易出现重大BUG&#xff0c;没有负权值的边时不要使用&#xff01;&#xff01;&#xff01; 70分代码 朴素板dijsk…

【pytorch20】多分类问题

网络结构以及示例 该网络的输出不是一层或两层的&#xff0c;而是一个十层的代表有十分类 新建三个线性层&#xff0c;每个线性层都有w和b的tensor 首先输入维度是784&#xff0c;第一个维度是ch_out,第二个维度才是ch_in(由于后面要转置)&#xff0c;没有经过softmax函数和…

Fast R-CNN(论文阅读)

论文名&#xff1a;Fast R-CNN 论文作者&#xff1a;Ross Girshick 期刊/会议名&#xff1a;ICCV 2015 发表时间&#xff1a;2015-9 ​论文地址&#xff1a;https://arxiv.org/pdf/1504.08083 源码&#xff1a;https://github.com/rbgirshick/fast-rcnn 摘要 这篇论文提出了一…

基于java+springboot+vue实现的校园外卖服务系统(文末源码+Lw)292

摘 要 传统信息的管理大部分依赖于管理人员的手工登记与管理&#xff0c;然而&#xff0c;随着近些年信息技术的迅猛发展&#xff0c;让许多比较老套的信息管理模式进行了更新迭代&#xff0c;外卖信息因为其管理内容繁杂&#xff0c;管理数量繁多导致手工进行处理不能满足广…

Stream流真的很好,但答应我别用toMap()

你可能会想&#xff0c;toList 和 toSet 都这么便捷顺手了&#xff0c;当又怎么能少得了 toMap() 呢。 答应我&#xff0c;一定打消你的这个想法&#xff0c;否则这将成为你噩梦的开端。 让我们先准备一个用户实体类。 Data AllArgsConstructor public class User { priv…

昇思MindSpore学习总结十——ResNet50迁移学习

1、迁移学习 &#xff08;抄自CS231n Convolutional Neural Networks for Visual Recognition&#xff09; 在实践中&#xff0c;很少有人从头开始训练整个卷积网络&#xff08;使用随机初始化&#xff09;&#xff0c;因为拥有足够大小的数据集相对罕见。相反&#xff0c;通常…

LLM - 循环神经网络(RNN)

1. RNN的关键点&#xff1a;即在处理序列数据时会有顺序的记忆。比如&#xff0c;RNN在处理一个字符串时&#xff0c;在对字母表顺序有记忆的前提下&#xff0c;处理这个字符串会更容易。就像人一样&#xff0c;读取下面第一个字符串会更容易&#xff0c;因为人对字母出现的顺序…

Linux应用---信号

写在前面&#xff1a;在前面的学习过程中&#xff0c;我们学习了进程间通信的管道以及内存映射的方式。这次我们介绍另外一种应用较为广泛的进程间通信的方式——信号。信号的内容比较多&#xff0c;是学习的重点&#xff0c;大家一定要认真学&#xff0c;多多思考。 一、信号概…

【AI资讯】可以媲美GPT-SoVITS的低显存开源文本转语音模型Fish Speech

Fish Speech是一款由fishaudio开发的全新文本转语音工具&#xff0c;支持中英日三种语言&#xff0c;语音处理接近人类水平&#xff0c;使用Flash-Attn算法处理大规模数据&#xff0c;提供高效、准确、稳定的TTS体验。 Fish Audio

驾校管理系统设计

驾校管理系统设计旨在提高驾校运营效率、学员管理、教练安排、考试预约、财务结算等方面的能力。以下是一个基本的设计框架&#xff0c;包括关键模块和数据表设计&#xff1a; 1. 系统架构设计 前端界面&#xff1a;提供给学员、教练和管理员使用的Web界面或移动应用&#xf…

【高中数学/基本不等式】当x是正实数时,求函数f(x)=x/(1+x^2)的最大值?

【问题】 当x是正实数时&#xff0c;求函数f(x)x/(1x^2)的最大值&#xff1f; 【解答】 解&#xff1a; f(x)x/(1x^2)1/(x1/x))<1/2倍根号下(x*1/x)1/2 所以函数在[0,∞)的区域最大值为0.5 【函数图像】 f(x)x/(1x^2)是奇函数&#xff0c;没有断点&#xff0c;是可以…

idea推送到gitee 401错误

在idea上推送时遇到这样的问题&#xff0c;解决方法如下&#xff1a; 在https://的后面加上 用户名:密码 然后再提交就ok啦&#xff01;

使用qt creator配置msvc环境(不需要安装shit一样的宇宙第一IDE vs的哈)

1. 背景 习惯使用Qt编程的童鞋&#xff0c;尤其是linux下开发Qt的童鞋一般都是使用qt creator作为首选IDE的&#xff0c;通常在windows上使用Qt用qt creator作为IDE的话一般编译器有mingw和msvc两种&#xff0c;使用mingw版本和在linux下的方式基本上一样十分简单&#xff0c;不…

Alt与Tab切换窗口时将Edge多个标签页作为一个整体参与切换的方法

本文介绍在Windows电脑中&#xff0c;使用Alt与Tab切换窗口时&#xff0c;将Edge浏览器作为一个整体参与切换&#xff0c;而不是其中若干个页面参与切换的方法。 最近&#xff0c;需要将主要使用的浏览器由原本的Chrome换为Edge&#xff1b;但是&#xff0c;在更换后发现&#…

数据结构与算法笔记:实战篇 - 剖析微服务接口鉴权限流背后的数据结构和算法

概述 微服务是最近几年才兴起的概念。简单点将&#xff0c;就是把复杂的大应用&#xff0c;解耦成几个小的应用 。这样做的好处有很多。比如&#xff0c;这样有利于团队组织架构的拆分&#xff0c;比较团队越大协作的难度越大&#xff1b;再比如&#xff0c;每个应用都可以独立…

mybatis-plus参数绑定异常

前言 最近要搞个发票保存的需求&#xff0c;当发票数据有id时说明是发票已经保存只需更新发票数据即可&#xff0c;没有id时说明没有发票数据需要新增发票&#xff1b;于是将原有的发票提交接口改造了下&#xff0c;将调用mybatis-plus的save方法改为saveOrUpdate方法&#xff…

从零开始实现大语言模型(四):简单自注意力机制

1. 前言 理解大语言模型结构的关键在于理解自注意力机制(self-attention)。自注意力机制可以判断输入文本序列中各个token与序列中所有token之间的相关性&#xff0c;并生成包含这种相关性信息的context向量。 本文介绍一种不包含训练参数的简化版自注意力机制——简单自注意…

Spark快速大数据分析PDF下载读书分享推荐

《Spark 快速大数据分析》是一本为 Spark 初学者准备的书&#xff0c;它没有过多深入实现细节&#xff0c;而是更多关注上层用户的具体用法。不过&#xff0c;本书绝不仅仅限于 Spark 的用法&#xff0c;它对 Spark 的核心概念和基本原理也有较为全面的介绍&#xff0c;让读者能…

clickhouse高可用可拓展部署

clickhouse高可用&可拓展部署 1.部署架构 1.1高可用架构 1.2硬件资源 部署服务 节点名称 节点ip 核数 内存 磁盘 zookeeper zk-01 / 4c 8G 100G zk-02 / 4c 8G 100G zk-03 / 4c 8G 100G clikehouse ck-01 / 32c 128G 2T ck-02 / 32c 128G 2T ck-03 / 32c 128G 2T ck-04 /…

昇思25天学习打卡营第13天 | LLM原理和实践:文本解码原理--以MindNLP为例

1. 文本解码原理--以MindNLP为例 1.1 自回归语言模型 根据前文预测下一个单词 一个文本序列的概率分布可以分解为每个词基于其上文的条件概率的乘积 W 0 W_0 W0​:初始上下文单词序列 t t t: 时间步 当生成EOS标签时&#xff0c;停止生成。 MindNLP/huggingface Transfor…