【图像分割】图像检测(分割、特征提取)、各种特征(面积等)的测量和过滤(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

【图像分割】图像检测(分割、特征提取)、各种特征(面积等)的测量和过滤

本文提供了一个适合初学者的教程,旨在演示图像检测(分割、特征提取)以及各种特征(如面积)的测量和过滤(只提取某些对象)。

首先,该教程介绍了如何找到图像中的所有对象(硬币),然后根据指定的直径过滤结果,筛选出特定直径的对象。通过一个简单的示例,展示了阈值处理、标记和区域属性的基本概念。

对于那些刚开始接触 MATLAB 图像处理功能的同学来说,这个教程是一个很好的起点。在他们深入学习更复杂的算法之前,可以通过这个教程加深对基本概念和技术的理解。

为了完成这个教程,需要安装图像处理工具箱,因为它演示了该工具箱提供的某些功能。同时,教程使用了工具箱自带的一个名为“硬币”的示例图像作为演示对象。

该教程的优点在于,它提供了一种直观和实用的方法,帮助初学者理解如何使用 MATLAB 对图像进行处理和分析。通过学习如何进行图像分割、特征提取和过滤,读者将受益于这些基本概念,并能够应用它们解决更为复杂的图像处理问题。这个教程对于那些有兴趣进一步探索图像处理领域的学生、研究人员和工程师来说,都是一个很好的起点。

📚2 运行结果

部分代码:

% Read in a standard MATLAB demo image of coins (US nickles and dimes, which are 5 cent and 10 cent coins).  This image ships with MATLAB.
baseFileName = 'coins.png';
folder = fileparts(which(baseFileName)); % Determine where demo folder is (works with all versions).
fullFileName = fullfile(folder, baseFileName);
fprintf('Full File Name = "%s".\n', fullFileName);
if ~exist(fullFileName, 'file')% It doesn't exist in the current folder.% Look on the search path.if ~exist(baseFileName, 'file')% It doesn't exist on the search path either.% Alert user that we can't find the image.warningMessage = sprintf('Error: the input image file\n%s\nwas not found.\nClick OK to exit the demo.', fullFileName);uiwait(warndlg(warningMessage));fprintf(1, 'Finished running BlobsDemo.m.\n');return;end% Found it on the search path.  Construct the file name.fullFileName = baseFileName; % Note: don't prepend the folder.
end
% If we get here, we should have found the image file.
originalImage = imread(fullFileName);
% Check to make sure that it is grayscale, just in case the user substituted their own image.
[rows, columns, numberOfColorChannels] = size(originalImage);
if numberOfColorChannels > 1promptMessage = sprintf('Your image file has %d color channels.\nThis demo was designed for grayscale images.\nDo you want me to convert it to grayscale for you so you can continue?', numberOfColorChannels);button = questdlg(promptMessage, 'Continue', 'Convert and Continue', 'Cancel', 'Convert and Continue');if strcmp(button, 'Cancel')fprintf(1, 'Finished running BlobsDemo.m.\n');return;end% Do the conversion using standard book formulaoriginalImage = rgb2gray(originalImage);
end% Display the grayscale image.
subplot(3, 3, 1);
imshow(originalImage);
% Maximize the figure window.
hFig1 = gcf;
hFig1.Units = 'normalized';
hFig1.WindowState = 'maximized'; % Go to full screen.
hFig1.NumberTitle = 'off'; % Get rid of "Figure 1"
hFig1.Name = 'Demo by Image Analyst'; % Put this into title bar.
% Force it to display RIGHT NOW (otherwise it might not display until it's all done, unless you've stopped at a breakpoint.)
drawnow;
caption = sprintf('Original "coins" image showing\n6 nickels (the larger coins) and 4 dimes (the smaller coins).');
title(caption, 'FontSize', captionFontSize);
axis('on', 'image'); % Make sure image is not artificially stretched because of screen's aspect ratio.% Just for fun, let's get its histogram and display it.
[pixelCount, grayLevels] = imhist(originalImage);
subplot(3, 3, 2);
bar(pixelCount);
title('Histogram of original image', 'FontSize', captionFontSize);
xlim([0 grayLevels(end)]); % Scale x axis manually.
grid on;%------------------------------------------------------------------------------------------------------------------------------------------------------
% Threshold the image to get a binary image (only 0's and 1's) of class "logical."
% Method #1: using im2bw()
%   normalizedThresholdValue = 0.4; % In range 0 to 1.
%   thresholdValue = normalizedThresholdValue * max(max(originalImage)); % Gray Levels.
%   binaryImage = im2bw(originalImage, normalizedThresholdValue);       % One way to threshold to binary
% Method #2: using a logical operation.
thresholdValue = 100;
binaryImage = originalImage > thresholdValue; % Bright objects will be chosen if you use >.
% ========== IMPORTANT OPTION ============================================================
% Use < if you want to find dark objects instead of bright objects.
%   binaryImage = originalImage < thresholdValue; % Dark objects will be chosen if you use <.% Do a "hole fill" to get rid of any background pixels or "holes" inside the blobs.
binaryImage = imfill(binaryImage, 'holes');% Show the threshold as a vertical red bar on the histogram.
hold on;
maxYValue = ylim;
line([thresholdValue, thresholdValue], maxYValue, 'Color', 'r');
% Place a text label on the bar chart showing the threshold.
annotationText = sprintf('Thresholded at %d gray levels', thresholdValue);
% For text(), the x and y need to be of the data class "double" so let's cast both to double.
text(double(thresholdValue + 5), double(0.5 * maxYValue(2)), annotationText, 'FontSize', 10, 'Color', [0 .5 0]);
text(double(thresholdValue - 70), double(0.94 * maxYValue(2)), 'Background', 'FontSize', 10, 'Color', [0 0 .5]);
text(double(thresholdValue + 50), double(0.94 * maxYValue(2)), 'Foreground', 'FontSize', 10, 'Color', [0 0 .5]);% Display the binary image.
subplot(3, 3, 3);
imshow(binaryImage);
title('Binary Image, obtained by thresholding', 'FontSize', captionFontSize);%------------------------------------------------------------------------------------------------------------------------------------------------------
% Identify individual blobs by seeing which pixels are connected to each other.  This is called "Connected Components Labeling".
% Each group of connected pixels will be given a label, a number, to identify it and distinguish it from the other blobs.
% Do connected components labeling with either bwlabel() or bwconncomp().
[labeledImage, numberOfBlobs] = bwlabel(binaryImage, 8);     % Label each blob so we can make measurements of it
% labeledImage is an integer-valued image where all pixels in the blobs have values of 1, or 2, or 3, or ... etc.
subplot(3, 3, 4);
imshow(labeledImage, []);  % Show the gray scale image.
title('Labeled Image, from bwlabel()', 'FontSize', captionFontSize);
drawnow;% Let's assign each blob a different color to visually show the user the distinct blobs.
coloredLabels = label2rgb (labeledImage, 'hsv', 'k', 'shuffle'); % pseudo random color labels
% coloredLabels is an RGB image.  We could have applied a colormap instead (but only with R2014b and later)
subplot(3, 3, 5);
imshow(coloredLabels);
axis image; % Make sure image is not artificially stretched because of screen's aspect ratio.
caption = sprintf('Pseudo colored labels, from label2rgb().\nBlobs are numbered from top to bottom, then from left to right.');
title(caption, 'FontSize', captionFontSize);%======================================================================================================================================================
% MAIN PART IS RIGHT HERE!!!
% Get all the blob properties.
props = regionprops(labeledImage, originalImage, 'all');
% Or, if you want, you can ask for only a few specific measurements.  This will be faster since we don't have to compute everything.
% props = regionprops(labeledImage, originalImage, 'MeanIntensity', 'Area', 'Perimeter', 'Centroid', 'EquivDiameter');
numberOfBlobs = numel(props); % Will be the same as we got earlier from bwlabel().
%======================================================================================================================================================%------------------------------------------------------------------------------------------------------------------------------------------------------
% PLOT BOUNDARIES.
% Plot the borders of all the coins on the original grayscale image using the coordinates returned by bwboundaries().
% bwboundaries() returns a cell array, where each cell contains the row/column coordinates for an object in the image.
subplot(3, 3, 6);
imshow(originalImage);
title('Outlines, from bwboundaries()', 'FontSize', captionFontSize);
axis('on', 'image'); % Make sure image is not artificially stretched because of screen's aspect ratio.
% Here is where we actually get the boundaries for each blob.
boundaries = bwboundaries(binaryImage); % Note: this is a cell array with several boundaries -- one boundary per cell.
% boundaries is a cell array - one cell for each blob.
% In each cell is an N-by-2 list of coordinates in a (row, column) format.  Note: NOT (x,y).
% Column 1 is rows, or y.    Column 2 is columns, or x.
numberOfBoundaries = size(boundaries, 1); % Count the boundaries so we can use it in our for loop
% Here is where we actually plot the boundaries of each blob in the overlay.
hold on; % Don't let boundaries blow away the displayed image.
for k = 1 : numberOfBoundariesthisBoundary = boundaries{k}; % Get boundary for this specific blob.x = thisBoundary(:,2); % Column 2 is the columns, which is x.y = thisBoundary(:,1); % Column 1 is the rows, which is x.plot(x, y, 'r-', 'LineWidth', 2); % Plot boundary in red.
end
hold off;%------------------------------------------------------------------------------------------------------------------------------------------------------
% Print out the measurements to the command window, and display blob numbers on the image.
textFontSize = 14;	% Used to control size of "blob number" labels put atop the image.
% Print header line in the command window.
fprintf(1,'Blob #      Mean Intensity  Area   Perimeter    Centroid       Diameter\n');
% Extract all the mean diameters into an array.
% The "diameter" is the "Equivalent Circular Diameter", which is the diameter of a circle with the same number of pixels as the blob.
% Enclosing in brackets is a nice trick to concatenate all the values from all the structure fields (every structure in the props structure array).
blobECD = [props.EquivDiameter];
% Loop over all blobs printing their measurements to the command window.
for k = 1 : numberOfBlobs           % Loop through all blobs.% Find the individual measurements of each blob.  They are field of each structure in the props strucutre array.% You could use the bracket trick (like with blobECD above) OR you can get the value from the field of this particular structure.% I'm showing you both ways and you can use the way you like best.meanGL = props(k).MeanIntensity;		% Get average intensity.blobArea = props(k).Area;				% Get area.blobPerimeter = props(k).Perimeter;		% Get perimeter.blobCentroid = props(k).Centroid;		% Get centroid one at a time% Now do the printing of this blob's measurements to the command window.fprintf(1,'#%2d %17.1f %11.1f %8.1f %8.1f %8.1f % 8.1f\n', k, meanGL, blobArea, blobPerimeter, blobCentroid, blobECD(k));% Put the "blob number" labels on the grayscale image that is showing the red boundaries on it.text(blobCentroid(1), blobCentroid(2), num2str(k), 'FontSize', textFontSize, 'FontWeight', 'Bold', 'HorizontalAlignment', 'center', 'VerticalAlignment', 'middle');
end%------------------------------------------------------------------------------------------------------------------------------------------------------
% Now, I'll show you a way to get centroids into an N -by-2 array directly from props,
% rather than accessing them as a field of the props strcuture array.
% We can get the centroids of ALL the blobs into 2 arrays,
% one for the centroid x values and one for the centroid y values.
allBlobCentroids = vertcat(props.Centroid);		% A 10 row by 2 column array of (x,y) centroid coordinates.
centroidsX = allBlobCentroids(:, 1);			% Extract out the centroid x values into their own vector.
centroidsY = allBlobCentroids(:, 2);			% Extract out the centroid y values into their own vector.
% Put the labels on the rgb labeled image also.
subplot(3, 3, 5);
for k = 1 : numberOfBlobs           % Loop through all blobs.% Place the blob label number at the centroid of the blob.text(centroidsX(k), centroidsY(k), num2str(k), 'FontSize', textFontSize, 'FontWeight', 'Bold', 'HorizontalAlignment', 'center', 'VerticalAlignment', 'middle');
end%------------------------------------------------------------------------------------------------------------------------------------------------------
% Now I'll demonstrate how to select certain blobs based using the ismember() function and extract them into new subimages.
% Let's say that we wanted to find only those blobs
% with an intensity between 150 and 220 and an area less than 2000 pixels.
% This would give us the three brightest dimes (the smaller coin type).
allBlobIntensities = [props.MeanIntensity];
allBlobAreas = [props.Area];
subplot(3, 3, 7);
histogram(allBlobAreas);
% Get a list of the blobs that meet our criteria and we need to keep.
% These will be logical indices - lists of true or false depending on whether the feature meets the criteria or not.
% for example [1, 0, 0, 1, 1, 0, 1, .....].  Elements 1, 4, 5, 7, ... are true, others are false.
allowableIntensityIndexes = (allBlobIntensities > 150) & (allBlobIntensities < 220);
allowableAreaIndexes = allBlobAreas < 2000; % Take the small objects.
% Now let's get actual indexes, rather than logical indexes, of the  features that meet the criteria.
% for example [1, 4, 5, 7, .....] to continue using the example from above.
keeperIndexes = find(allowableIntensityIndexes & allowableAreaIndexes);
% Extract only those blobs that meet our criteria, and
% eliminate those blobs that don't meet our criteria.
% Note how we use ismember() to do this.  Result will be an image - the same as labeledImage but with only the blobs listed in keeperIndexes in it.
keeperBlobsImage = ismember(labeledImage, keeperIndexes);
% Re-label with only the keeper blobs kept.
labeledDimeImage = bwlabel(keeperBlobsImage, 8);     % Label each blob so we can make measurements of it
% Now we're done.  We have a labeled image of blobs that meet our specified criteria.
subplot(3, 3, 7);
imshow(labeledDimeImage, []);
axis image;
title('"Keeper" blobs (3 brightest dimes in a re-labeled image)', 'FontSize', captionFontSize);
elapsedTime = toc;
fprintf('Blob detection and measurement took %.3f seconds.\n', elapsedTime)%------------------------------------------------------------------------------------------------------------------------------------------------------
% Plot the centroids in the overlay above the original image in the upper left axes.
% Dimes will have a red cross, nickels will have a blue X.
message = sprintf('Now I will plot the centroids over the original image in the upper left.\nPlease look at the upper left image.');
reply = questdlg(message, 'Plot Centroids?', 'OK', 'Cancel', 'Cancel');
% Note: reply will = '' for Upper right X, 'OK' for OK, and 'Cancel' for Cancel.
if strcmpi(reply, 'Cancel')return;
end
subplot(3, 3, 1);
hold on; % Don't blow away image.
for k = 1 : numberOfBlobs           % Loop through all keeper blobs.% Identify if blob #k is a dime or nickel.itsADime = allBlobAreas(k) < 2200; % Dimes are small.if itsADime% Plot dimes with a red +.plot(centroidsX(k), centroidsY(k), 'r+', 'MarkerSize', 15, 'LineWidth', 2);else% Plot nickels with a blue x.plot(centroidsX(k), centroidsY(k), 'bx', 'MarkerSize', 15, 'LineWidth', 2);end
end%------------------------------------------------------------------------------------------------------------------------------------------------------
% Now use the keeper blobs as a mask on the original image so we will get a masked gray level image.
% This will keep the regions in the mask as original but erase (blacken) everything else (outside of the mask regions).
% This will let us display the original image in the regions of the keeper blobs.
maskedImageDime = originalImage; % Simply a copy at first.
maskedImageDime(~keeperBlobsImage) = 0;	% Set all non-keeper pixels to zero.
subplot(3, 3, 8);
imshow(maskedImageDime);
axis image;
title('Only the 3 brightest dimes from the original image', 'FontSize', captionFontSize);%------------------------------------------------------------------------------------------------------------------------------------------------------
% Now let's get the nickels (the larger coin type).
keeperIndexes = find(allBlobAreas > 2000);  % Take the larger objects.
% Note how we use ismember to select the blobs that meet our criteria.  Get a binary image with only nickel regions present.
nickelBinaryImage = ismember(labeledImage, keeperIndexes);
% Let's get the nickels from the original grayscale image, with the other non-nickel pixels blackened.
% In other words, we will create a "masked" image.
maskedImageNickel = originalImage; % Simply a copy at first.
maskedImageNickel(~nickelBinaryImage) = 0;  % Set all non-nickel pixels to zero.
subplot(3, 3, 9);
imshow(maskedImageNickel, []);
axis image;
title('Only the nickels from the original image', 'FontSize', captionFontSize);%------------------------------------------------------------------------------------------------------------------------------------------------------
% WE'RE BASICALLY DONE WITH THE DEMO NOW.
elapsedTime = toc;
% Alert user that the demo is done and give them the option to save an image.
message = sprintf('Done making measurements of the features.\n\nElapsed time = %.2f seconds.', elapsedTime);
message = sprintf('%s\n\nCheck out the figure window for the images.\nCheck out the command window for the numerical results.', message);
message = sprintf('%s\n\nDo you want to save the pseudo-colored image?', message);
reply = questdlg(message, 'Save image?', 'Yes', 'No', 'No');
% Note: reply will = '' for Upper right X, 'Yes' for Yes, and 'No' for No.
if strcmpi(reply, 'Yes')% Ask user for a filename.FilterSpec = {'*.PNG', 'PNG Images (*.png)'; '*.tif', 'TIFF images (*.tif)'; '*.*', 'All Files (*.*)'};DialogTitle = 'Save image file name';% Get the default filename.  Make sure it's in the folder where this m-file lives.% (If they run this file but the cd is another folder then pwd will show that folder, not this one.thisFile = mfilename('fullpath');[thisFolder, baseFileName, ext] = fileparts(thisFile);DefaultName = sprintf('%s/%s.tif', thisFolder, baseFileName);[fileName, specifiedFolder] = uiputfile(FilterSpec, DialogTitle, DefaultName);if fileName ~= 0% Parse what they actually specified.[folder, baseFileName, ext] = fileparts(fileName);% Create the full filename, making sure it has a tif filename.fullImageFileName = fullfile(specifiedFolder, [baseFileName '.tif']);% Save the labeled image as a tif image.imwrite(uint8(coloredLabels), fullImageFileName);% Just for fun, read image back into the imtool utility to demonstrate that tool.tifimage = imread(fullImageFileName);imtool(tifimage, []);end
end%------------------------------------------------------------------------------------------------------------------------------------------------------
% OPTIONAL : CROP EACH COIN OUT TO A SEPARATE SUB-IMAGE ON A NEW FIGURE.
message = sprintf('Would you like to crop out each coin to individual images?');
reply = questdlg(message, 'Extract Individual Images?', 'Yes', 'No', 'Yes');
% Note: reply will = '' for Upper right X, 'Yes' for Yes, and 'No' for No.
if strcmpi(reply, 'Yes')% Maximize the figure window.hFig2 = figure;	% Create a new figure window.hFig2.Units = 'normalized';hFig2.WindowState = 'maximized'; % Go to full screen.hFig2.NumberTitle = 'off'; % Get rid of "Figure 1"hFig2.Name = 'Demo by Image Analyst'; % Put this into title bar.for k = 1 : numberOfBlobs		% Loop through all blobs.% Find the bounding box of each blob.thisBlobsBoundingBox = props(k).BoundingBox;  % Get list of pixels in current blob.% Extract out this coin into it's own image.subImage = imcrop(originalImage, thisBlobsBoundingBox);% Determine if it's a dime (small) or a nickel (large coin).if props(k).Area > 2200coinType = 'nickel';elsecoinType = 'dime';end% Display the image with informative caption.subplot(3, 4, k);imshow(subImage);caption = sprintf('Coin #%d is a %s.\nDiameter = %.1f pixels\nArea = %d pixels', ...k, coinType, blobECD(k), props(k).Area);title(caption, 'FontSize', textFontSize);end%------------------------------------------------------------------------------------------------------------------------------------------------------% Display the MATLAB "peaks" logo.logoSubplot = subplot(3, 4, 11:12);caption = sprintf('A MATLAB Tutorial by ImageAnalyst');text(0.5,1.15, caption, 'Color','r', 'FontSize', 18, 'FontWeight','b', 'HorizontalAlignment', 'center', 'VerticalAlignment', 'middle') ;positionOfLowerRightPlot = get(logoSubplot, 'position');L = 40*membrane(1,25);logoax = axes('CameraPosition', [-193.4013, -265.1546, 220.4819],...'Box', 'off', ...'CameraTarget',[26, 26, 10], ...'CameraUpVector',[0, 0, 1], ...'CameraViewAngle',9.5, ...'DataAspectRatio', [1, 1, .9],...'Position', positionOfLowerRightPlot, ...'Visible','off', ...'XLim',[1, 51], ...'YLim',[1, 51], ...'ZLim',[-13, 40], ...'parent', gcf);axis(logoSubplot, 'off');s = surface(L, ...'EdgeColor','none', ...'FaceColor',[0.9, 0.2, 0.2], ...'FaceLighting','phong', ...'AmbientStrength',0.3, ...'DiffuseStrength',0.6, ...'Clipping','off',...'BackFaceLighting','lit', ...'SpecularStrength',1, ...'SpecularColorReflectance',1, ...'SpecularExponent',7, ...'Tag','TheMathWorksLogo', ...'parent',logoax);l1 = light('Position',[40, 100, 20], ...

% OPTIONAL : CROP EACH COIN OUT TO A SEPARATE SUB-IMAGE ON A NEW FIGURE.
message = sprintf('Would you like to crop out each coin to individual images?');
reply = questdlg(message, 'Extract Individual Images?', 'Yes', 'No', 'Yes');
% Note: reply will = '' for Upper right X, 'Yes' for Yes, and 'No' for No.
if strcmpi(reply, 'Yes')
    % Maximize the figure window.
    hFig2 = figure;    % Create a new figure window.
    hFig2.Units = 'normalized';
    hFig2.WindowState = 'maximized'; % Go to full screen.
    hFig2.NumberTitle = 'off'; % Get rid of "Figure 1"
    hFig2.Name = 'Demo by Image Analyst'; % Put this into title bar.

    for k = 1 : numberOfBlobs        % Loop through all blobs.
        % Find the bounding box of each blob.
        thisBlobsBoundingBox = props(k).BoundingBox;  % Get list of pixels in current blob.
        % Extract out this coin into it's own image.
        subImage = imcrop(originalImage, thisBlobsBoundingBox);
        % Determine if it's a dime (small) or a nickel (large coin).
        if props(k).Area > 2200
            coinType = 'nickel';
        else
            coinType = 'dime';
        end
        % Display the image with informative caption.
        subplot(3, 4, k);
        imshow(subImage);
        caption = sprintf('Coin #%d is a %s.\nDiameter = %.1f pixels\nArea = %d pixels', ...
            k, coinType, blobECD(k), props(k).Area);
        title(caption, 'FontSize', textFontSize);
    end

    %------------------------------------------------------------------------------------------------------------------------------------------------------
    % Display the MATLAB "peaks" logo.
    logoSubplot = subplot(3, 4, 11:12);
    caption = sprintf('A MATLAB Tutorial by ImageAnalyst');
    text(0.5,1.15, caption, 'Color','r', 'FontSize', 18, 'FontWeight','b', 'HorizontalAlignment', 'center', 'VerticalAlignment', 'middle') ;
    positionOfLowerRightPlot = get(logoSubplot, 'position');
    L = 40*membrane(1,25);
    logoax = axes('CameraPosition', [-193.4013, -265.1546, 220.4819],...
        'Box', 'off', ...
        'CameraTarget',[26, 26, 10], ...
        'CameraUpVector',[0, 0, 1], ...
        'CameraViewAngle',9.5, ...
        'DataAspectRatio', [1, 1, .9],...
        'Position', positionOfLowerRightPlot, ...
 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]马寅.基于CCD的图像特征提取与识别[D].东北大学,2012.DOI:10.7666/d.J0120301.

[2]王妞,康辉英.基于图像检测的船舶特征分割与提取优化算法[J].舰船科学技术, 2018(4X):3.DOI:CNKI:SUN:JCKX.0.2018-08-049.

[3]尹聪.彩色图像人脸检测与特征提取认证[J].信息技术与信息化, 2009.DOI:JournalArticle/5af35bd8c095d718d80b8d86.

[4]罗文辉,王三武.基于面积和结构特征的水表图像二步分割方法[J].武汉理工大学学报:信息与管理工程版, 2006, 28(5):4.DOI:10.3963/j.issn.1007-144X.2006.05.014.

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/145853.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

系统集成|第二十一章(笔记)

目录 第二十一章 知识产权与法律法规21.1 知识产权21.2 法律法规 上篇&#xff1a;第二十章、收尾管理 第二十一章 知识产权与法律法规 21.1 知识产权 概述&#xff1a;狭义的知识产权就是传统意义上的知识产权&#xff0c;包括著作权&#xff08;含邻接权&#xff09;&#x…

iOS自动化测试方案(二):Xcode开发者工具构建WDA应用到iphone

文章目录 一、环境准备1.1、软件环境1.2、硬件环境1.3、查看版本 二、安装WDA过程2.7、构建失败&#xff0c;这类错误有很多&#xff0c;比如在选择开发者账号后&#xff0c;就会提示:Failed to register bundle identifier表示应用唯一注册失败2.9、第二个错误&#xff0c;完全…

嵌入式Linux应用开发-第十四章查询方式的按键驱动程序

嵌入式Linux应用开发-第十四章查询方式的按键驱动程序 第十四章 查询方式的按键驱动程序_编写框架14.1 LED驱动回顾14.2 按键驱动编写思路14.3 编程&#xff1a;先写框架14.3.1 把按键的操作抽象出一个button_operations结构体14.3.2 驱动程序的上层&#xff1a;file_operation…

Oracle的递归公共表表达式

查询节点id为2的所有子节点的数据&#xff0c;包括向下级联 WITH T1 (id, parent_id, data) AS (SELECT id, parent_id, dataFROM nodesWHERE id 2UNION ALLSELECT t.id, t.parent_id, t.dataFROM nodes tJOIN T1 n ON t.parent_id n.id ) SELECT * FROM T1; --建表语句 C…

layui 树状控件tree优化

先上效果图&#xff1a; 我选的组件是这个&#xff1a; 动态渲染完后&#xff0c;分别在窗体加载完成&#xff0c;节点点击事件分别加入js&#xff1a; //侧边栏图标替换//layui-icon-subtraction$(function () {$(".layui-icon-file").addClass("backs&quo…

【HTML】表格行和列的合并

概述 当我们需要在 HTML 表格中展示复杂的数据时&#xff0c;行和列的合并可以帮助我们实现更灵活的布局和结构。通过合并行和列&#xff0c;我们可以创建具有更多层次和结构的表格&#xff0c;使数据更易于理解和分析。 在 HTML 表格中&#xff0c;我们可以使用 rowspan 和 …

普通用户在Linux下免密执行sudo命令,真的可以吗?

主旨 在linux的日常运维中&#xff0c;我们会发现&#xff0c;使用root用户的权限太大了&#xff0c;很多时候一不小心就删错了&#xff0c;而且恢复不回来&#xff0c;我们应该怎么避免呢&#xff1f; 我们可以使用普通用户进行服务器的登录&#xff0c;如果有权限不够的情况&…

C/C++跨平台构建工具CMake-----在C++源码中读取CMakeLists.txt配置文件中的内容

文章目录 1.需求描述2.需求准备2.1 创建项目2.2 编辑CMakeLists.txt文件2.3 编写C文件2.4 编译构建项目 3.需求实现3.1 在CMakeLists.txt中输出日志信息3.2 增加配置生成C头文件3.3在C 源码中访问配置的值3.4 C文件中读取CMakeLists.txt中的字符串 总结 1.需求描述 当我们开发…

HTML之如何下载网页中的音频(二)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

Kafka(一)使用Docker Compose安装单机Kafka以及Kafka UI

文章目录 Kafka中涉及到的术语Kafka镜像选择Kafka UI镜像选择Docker Compose文件Kafka配置项说明KRaft vs Zookeeper和KRaft有关的配置关于Controller和Broker的概念解释Listener的各种配置 Kafka UI配置项说明 测试Kafka集群Docker Compose示例配置 Kafka中涉及到的术语 对于…

Linux—进程间通信之System V共享内存

目录 简介System V共享内存特点及用法 共享内存的创建共享内存的关联与去关联共享内存的删除共享内存通信代码实现总结 简介 System V共享内存是一种在Unix-like系统中广泛使用的共享内存机制。它是基于System V IPC&#xff08;Inter-Process Communication&#xff0c;进程间…

SpringBoot整合阿里云OSS文件存储解决方案

&#x1f9d1;‍&#x1f4bb;作者名称&#xff1a;DaenCode &#x1f3a4;作者简介&#xff1a;啥技术都喜欢捣鼓捣鼓&#xff0c;喜欢分享技术、经验、生活。 &#x1f60e;人生感悟&#xff1a;尝尽人生百味&#xff0c;方知世间冷暖。 &#x1f4d6;所属专栏&#xff1a;Sp…

毛玻璃态登录表单

效果展示 页面结构组成 通过上述的效果展示可以看出如下几个效果 底部背景有三个色块并且效果是毛玻璃效果登录表单是毛玻璃效果登录表单的周围的小方块也是有毛玻璃效果并且与登录表单有层次效果 CSS3 知识点 filter 属性backdrop-filter 属性绝对定位属性动画属性 底部背…

(高阶) Redis 7 第16讲 预热/雪崩/击穿/穿透 缓存篇

面试题 什么是缓存预热/雪崩/击穿/穿透如何做缓存预热如何避免或减少缓存雪崩穿透和击穿的区别?穿透和击穿的解决方案出现缓存不一致时,有哪些修补方案缓存预热 理论 将需要的数据提前加载到缓存中,不需要用户使用的过程中进行数据回写。(比如秒杀活动数据等) 方案 1.…

idea Springboot 校园助学贷款系统VS开发mysql数据库web结构java编程计算机网页源码maven项目

一、源码特点 springboot 校园助学贷款系统是一套完善的信息系统&#xff0c;结合springboot框架和bootstrap完成本系统&#xff0c;对理解JSP java编程开发语言有帮助系统采用springboot框架&#xff08;MVC模式开发&#xff09;&#xff0c;系统 具有完整的源代码和数据库&…

Ubuntu服务器安全性提升:修改SSH默认端口号

在Ubuntu服务器上&#xff0c;SSH&#xff08;Secure Shell&#xff09;是一种至关重要的远程连接工具。它提供了一种安全的方式来远程连接和管理计算机系统&#xff0c;通过加密通信来确保数据的保密性和完整性。SSH协议广泛用于计算机网络中&#xff0c;用于远程管理、文件传…

网络-Ajax

文章目录 前言一、Ajax优点&#xff1a;缺点&#xff1a; 二、使用步骤XNLHttpRequest对象完整代码 总结 前言 本文主要记录Ajax技术的简介&#xff0c;以及用法。 一、Ajax Ajax是一组用于在Web浏览器和Web服务器之间进行异步通信的Web开发技术。 它代表着Asynchronous Java…

解决大模型行业落地三大挑战,华为云GaussDB向量数据库正式发布

随着AI大模型产品及应用呈现爆发式增长,新的AI时代已经到来。向量数据库可与大语言模型配合使用,解决大模型落地过程中的痛点,已成为企业数据处理和应用大模型的必选项。在近日举行的华为全联接大会2023期间,华为云正式发布GaussDB向量数据库。GaussDB向量数据库基于GaussD…

Android 使用Kotlin封装RecyclerView

文章目录 1.概述2.运行效果图3.代码实现3.1 扩展RecyclerView 3.2 扩展Adapter3.3 RecyclerView装饰绘制3.3.1 以图片实现分割线3.3.2 画网格线3.3.3空白的分割线3.3.4 不同方向上的分割线 3.4 使用方法 1.概述 在一个开源项目上看到了一个Android Kotlin版的RecyclerView封装…