手把手教你用Coze零代码搭建一个智能搜索智能体,高时效性、保姆级!

随着大模型技术的发展,越来越多的技术开始涌现,从聊天助手,到智能体,再到工作流,最后到三者的整合。大模型技术朝着更加智能化、通用化、个性化的方向发展,为人们的生活和工作带来了更多的便利和创新。

今天,手把手教大家如何通过Coze零代码搭建一个智能搜索智能体,能够根据你的关键词,自动进行全网搜索,筛选出最相关的内容,并进行智能总结,给出参考链接,提升你信息收集的效率,高时效、保姆级!比较肝,建议先收藏!

一、Coze介绍

1.1 什么是Coze

**扣子是新一代 AI 应用开发平台。**无论你是否有编程基础,都可以在扣子上快速搭建基于大模型的各类智能体,并将智能体发布到各个社交平台、通讯软件或部署到网站等其他渠道。

1.2 Coze的功能特性

    1. 灵活的工作流设计
  • • 扣子工作流可处理逻辑复杂且稳定性要求高的任务流。

  • • 提供大量灵活可组合节点,如大语言模型 LLM、自定义代码、判断逻辑等。

  • • 无论有无编程基础都可通过拖拉拽方式快速搭建工作流,例如创建搜集电影评论工作流、撰写行业研究报告工作流。

    1. 无限拓展的能力集
  • • 扣子集成丰富插件工具,拓展智能体能力边界。

  • • 官方插件:扣子官方发布多款能力丰富插件,包括资讯阅读、旅游出行、效率办公、图片理解等 API 及多模态模型,可直接添加到智能体中,如使用新闻插件打造 AI 新闻播音员。

  • • 自定义插件:扣子平台支持创建自定义插件,可将已有 API 能力通过参数配置方式创建插件让智能体调用,也可发布到商店供其他用户使用。

    1. 丰富的数据源
  • • 扣子提供简单易用知识库功能管理和存储数据,支持智能体与用户自己的数据交互。

  • • 内容格式:知识库支持文本、表格、照片格式数据。

  • • 内容上传:知识库支持 TXT 等本地文件、在线网页数据、Notion 页面及数据库、API JSON 等多种数据源,也可直接在知识库内添加自定义数据。

    1. 持久化的记忆能力
  • • 扣子提供方便 AI 交互的数据库记忆能力,可持久记住用户对话重要参数或内容。

  • • 例如创建数据库记录阅读笔记,智能体可通过查询数据库提供更准确答案。

二、什么是智能体

在介绍如何搭建智能体之前,让我们了解一下什么是智能体。

所谓智能体,是基于大型语言模型构建的智能实体,它具备感知规划推理学习执行决策等智能行为特征,能够自动化地完成包括文本生成、对话交互、语言翻译、数据分析、预测分析在内的多种复杂任务,显著提升工作效率,为人类创造更便捷、智能的生活方式。

三、智能体搭建

接下来,手把手教大家如何在Coze上搭建一个属于自己的智能搜索智能体。

2.1 工作流创建

2.1.1 认识工作流界面

首先进入到Coze的官网,点击左侧的「工作空间」,然后点击「资源库」,再点击右上角的「资源」,选择工作流。

然后输入工作流名称,我这里输入的是info_collection,也可以是其他的;输入工作流描述,我这里是调用各种搜索引擎,搜索相关信息。然后点击确认完成创建

在工作流界面上,左侧有不同的节点,如:插件大模型代码知识库工作流等等。其中:

  • 插件:可以通过API和外部数据与系统进行交互,能够增强模型能力。

  • 大模型:顾名思义,就是大模型,基于大量不同的数据进行训练,具有强大的通用基础知识。

  • 代码:可以通过代码来处理一个流程中的数据

  • 知识库:可以理解为大模型的外挂知识库,可以有效解决模型的幻觉问题。

2.1.2 添加搜索插件

首先,让我们来为工作流添加几个搜索插件,点击左侧的「插件」:

在弹出的窗口中,勾选上「仅显示官方插件」

在左侧文本框输入「必应搜索」,并点击「添加」。

然后再输入「头条搜索」,点击「添加」

输入「头条新闻」,点击「添加」

输入「抖音视频」,点击「添加」

这样,我们的工作流就有了四个搜索来源了,节点名字分别是bingWebSearch, search, getToutiaoNews, get_video,如果感兴趣的话,还可以继续添加。将「开始」节点和刚才添加的四个搜索节点进行链接:

点击具体的搜索节点,分别设置每个搜索节点的输入参数,首先是bingWebSearch

然后是search

然后是getToutiaoNews

最后是get_video

2.1.3 添加代码插件

在每个搜索节点执行完之后,我们需要将这几个搜索节点结果中的url合并起来,用来爬取其中的内容。这里,我新建了一个「代码」节点,用来合并搜索节点的结果。

在左侧选择「代码」,点击+号,即可添加一个「代码」节点

将「搜索」节点和「代码」节点进行连接:

点击「代码」节点,设置它的输入参数,其中每个条目具体的参数如下:

  • bing_result:data/webPages/value

  • search_result: data/doc_results

  • toutiao_result: news

  • videl_result: data/list

然后选择「在IDE中编辑」:

在顶部将语言切换为「Python」:

输入下面代码:

async def main(args: Args)->Output:  params = args.params  bing_result = params['bing_result']  search_result = params['search_result']  toutiao_result = params['toutiao_result']  video_result = params['video_result']  result = []  if bing_result is not None:  for item in bing_result:  if item == None:  continue  result.append(item["url"])  if search_result is not None:  for item in search_result:  if item == None:  continue  result.append(item['url'])  if toutiao_result is not None:  for item in toutiao_result:  if item == None:  continue  result.append(item['url'])  if video_result is not None:  for item in video_result:  if item == None:  continue  result.append(item['link'])  ret ={  "key": result  }  return ret

同时修改「输出」参数,如下所示:

2.1.4 爬取网页结果

现在,我们拿到了不同搜索节点获取到的链接,接下来,我们添加一个「链接读取」插件,来获取网页内容。

同样,还是在左侧点击「插件」,选择「链接读取」,并点击「添加」。

添加完之后,可以在工作流中看到对应的插件(链接读取),节点名字为LinkReaderPlugin。连接「代码」节点和「LinkReaderPlugin」:

点击「LinkReaderPlugin」,设置一些参数。因为我们是一次传入一批url链接到「链接读取」插件,所以在参数设置中,选择「批处理」,如下所示:

上面的设置中,不同条目的设置如下:

  • • 批处理:

  • item:选择代码节点的输出

  • • 输入:

  • url:选择LinkReaderPlugin->item

2.1.5 过滤爬取结果

可能会因为各种原因,网络爬虫无法对每条url都返回结果,这些无法爬取的url的结果在返回的时候是None(空),不太方便后面批量处理,因此我们需要对上面「链接获取」节点的输出结果进行过滤。再次添加一个「代码节点」,并修改名称为「结果过滤」,并和「链接获取」节点连接:

设置「代码」节点的输入为「链接获取」节点的输出,如下所示:

然后修改语言为Python,代码如下:

async def main(args: Args)->Output:  params = args.params  link_result = params['link_result']  content = []  for item in link_result:  try:  content.append(item['data']['content'])  except:  continue  return content

同时修改「输出」:

2.1.6 网页内容总结

每个网页的结果数众多,我们不可能从头看到尾,因此需要用大模型对结果进行总结。在工作流界面左侧点击「大模型」,添加一个大模型,并链接上一节的「代码」节点。

同样,大模型也需要进行批处理,下面是设置参考:

2.1.7 结果汇总

现在,我们一共有这些信息:

    1. url
    1. title
    1. content总结

但是这些信息分散在不同的节点。下面,我们新建一个「代码」节点将这些汇总起来,如下所示

代码节点的参数配置如下:

具体代码如下:

async def main(args: Args)->Output:  params = args.params  link_result = params['link_result']  link_list = params['link_list']  model_result = params['model_result']  assert len(link_list) == len(link_result)  result = []  for item1, item2 in zip(link_result, link_list):  try:  title = item1['data']['title']  link = item2  result.append({  "link": link,  "title": title,  })  except:  continue  assert len(model_result) == len(result)  for i in range(len(result)):  result[i]["content"] = model_result[i]['output']  ret ={  "key": result  }  return ret

2.1.8 输出结果

将上面「结果合并」节点和最终的「结束」节点连接

并修改「结束」节点的输出,如下图所示:

2.1.9 发布

至此,一个工作流就创建完成了,可以点击右上角的试运行:

输入关键词,运行一下看看:

如果没有问题的话,可以看到「结束」节点的输出结果,在我的工作流里,一共有27个结果,每个结果包含:内容、链接、标题。

然后点击发布:

就可以在「资源库」页面看到我们创建的工作流了:

接下来,我们可以创建一个智能体,来使用这个工作流了。

2.2 智能体创建

2.2.1 创建

在Coze点击左侧的「工作空间」,选择「项目开发」,然后点击「创建智能体」,输入智能体名称和图标,点击「确认」,即可完成智能体创建。

2.2.2 配置

下面是智能体的配置,需要修改地方有:

  • 人设与回复逻辑

  • 工作流

  • 开场白

  • 开场白预置问题

如下图所示:

其中,人设与回复逻辑如下:

# 角色  
你是一个专业且高效的信息收集专家,能够快速准确地搜集各类相关信息,并以清晰的方式呈现给用户。  ## 技能  
### 技能 1:确定信息主题与范围  
1.当接收到信息收集任务时,明确信息的具体主题及范围。  
2.调用 info_collection 工作流,获取关键词对应的搜索结果。  ### 技能 2:整理与汇总信息  
1.对收集到的每一条信息进行细致整理,按照以下格式呈现:  
-标题:<title>  
-内容:<content>  
-链接:<link>  ## 限制  
-只收集与给定主题高度相关的信息,坚决摒弃不相关内容。  
-输出内容必须严格按照规定格式组织,不得偏离要求框架。  
-不得减少结果条数。  
- 信息汇总务必保持客观、准确,严禁加入任何主观臆断。
2.2.3 大模型配置

因为我们主要是做信息搜集,不需要大模型有太强的发散能力,所以需要修改一下大模型的参数。

点击顶部的大模型,将其设置为「精确模式」

至此,一个智能体就搭建完成了。

四、和智能体交互

接下来,让我们向智能体提问几个问题,看看效果如下:

4.1 问题:什么是智能体

在对话框输入:什么是智能体?

可以看到智能体会调用我们刚才创建的工作流进行信息搜索,并且也可以看到搜索的结果。

然后智能体会将信息进行总结,并按照规定的格式输出,并且每条结果所附的链接也是完全准确的!

五、总结

本文从介绍什么是Coze什么是智能体,到工作流搭建智能体搭建手把手教你搭建了一个能够自动搜集全网信息的智能体,提高你的信息搜集效率,提升你的信息搜集体验,同时也避免了广告的困扰!如果对此类教程感兴趣的话,欢迎Mark~后续会持续更新!

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/13783.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

HTML之列表学习记录

练习题&#xff1a; 图所示为一个问卷调查网页&#xff0c;请制作出来。要求&#xff1a;大标题用h1标签&#xff1b;小题目用h3标签&#xff1b;前两个问题使用有序列表&#xff1b;最后一个问题使用无序列表。 代码&#xff1a; <!DOCTYPE html> <html> <he…

数据结构Python版

2.3.3 双链表 双链表和链表一样&#xff0c;只不过每个节点有两个链接——一个指向后一个节点&#xff0c;一个指向前一个节点。此外&#xff0c;除了第一个节点&#xff0c;双链表还需要记录最后一个节点。 每个结点为DLinkNode类对象&#xff0c;包括存储元素的列表data、…

Linux手动安装nginx

本次以安装nginx-1.12.2为例 1、首先说明一下,安装nginx之前需要安装如下素材: 2、开始安装 第一步,安装依赖yum -y install gcc zlib zlib-devel pcre-devel openssl openssl-devel第二步,下载并安装nginx安装包(nginx官网:http://nginx.org/)# 下载 wget http://nginx…

无线感知会议系列【14】SignFi: Sign Language Recognition Using WiFi

摘要&#xff1a; 这篇Paper 是用CNN 做的,用来做手语识别的 模型输入&#xff1a; csi_tensor [M,N,S,T] M: tx 发送天线数量 N: rx 天线数量 S: 幅度和相位信息 T: CSI matrix for each instance 数据集大小 模型结构,跟斯坦福的HAR LSTM 有较大差异[batch_size, time, carr…

详解AI产品经理的发展与规划(附完整PPT)

随着AI技术的逐渐普及与落地&#xff0c;AI产品经理在市场上也变得分外火热。那么在未来&#xff0c;这个职业将如何发展&#xff0c;它的工作要素有哪些&#xff0c;要怎么做才能成为一名AI产品经理呢&#xff1f; 大家好&#xff0c;近日分享一些关于AI产品经理的话题。这个…

【大数据技术基础 | 实验十】Hive实验:部署Hive

文章目录 一、实验目的二、实验要求三、实验原理四、实验环境五、实验内容和步骤&#xff08;一&#xff09;安装部署&#xff08;二&#xff09;配置HDFS&#xff08;三&#xff09;启动Hive 六、实验结果&#xff08;一&#xff09;启动结果&#xff08;二&#xff09;Hive基…

[⑧5G NR]: PBCH payload生成

本篇博客记录下5G PBCH信道中payload数据的生成方式。PBCH payload一共32个比特&#xff0c;基本结构如下图&#xff1a; 根据SSB PDU中bchPayloadFlag的值有三种方式得到PBCH payload。 bchPayloadFlag 0&#xff1a;全部32比特由MAC层提供。 bchPayloadFlag 1&#xff1a;M…

大模型面试熬夜爆肝整理,附八股文和答案,这次换我手撕面试官了吧?

导读 自ChatGPT开启大模型时代以来&#xff0c;大模型正迎来飞速发展&#xff0c;现在从事大模型开发相关工作可谓是处在时代的风口。那么大模型面试需要哪些技能和技巧呢&#xff0c;本文详细整理了全套的面试问题及答案&#xff0c;希望对大家有所帮助&#xff01; 目录 [x…

刷题笔记——栈和队列互相冒充

刷题笔记——栈和队列互相冒充 5.3 用队列实现栈两队列实现栈一个队列实现栈 5.4 用栈实现队列两栈实现队列push栈和pop栈一个栈实现队列 5.3 用队列实现栈 原OJ题&#xff1a;225. 用队列实现栈 - 力扣&#xff08;LeetCode&#xff09; 两队列实现栈 入栈的实现 选非空的…

【Linux】网络编程3

文件描述符的作用 在TCP通信的过程&#xff0c;服务器端会产生两类不同的文件描述符&#xff0c;一个是监听的文件描述符&#xff1b;另一个是用于通信的文件描述符。它们有什么不同呢&#xff1f; 监听的文件描述符&#xff1a; 只有一个&#xff0c;它不负责与客户端的通信&…

番外-JDBC:2024年最新java连接数据库教程

前言 JavaScript的内容晚点更新&#xff0c;今天继续更新一点番外&#xff0c;今天更新的是jdbc&#xff0c;如何用java连接数据库 1.导包 要使java能够连接数据库我们需要导入一个包&#xff0c;请按照以下操作安装并导包 1.进入官网 MySQL 以上为官网链接进去后点击下载…

LIMA模型——大模型对齐的新方法

人工智能咨询培训老师叶梓 转载标明出处 大模型通常在两个阶段进行训练&#xff1a;首先是从原始文本中进行无监督预训练&#xff0c;以学习通用表示&#xff1b;其次是通过大规模的指令微调和强化学习&#xff0c;以更好地适应最终任务和用户偏好。来自Meta AI、卡内基梅隆大…

向量数据库PGVECTOR安装

文章目录 前提向量数据库介绍PGVECTOR安装1、pgvector下载2、编译安装3、创建vector扩展 前提 已经安装好了pg14版本。 其他版本也可以。 pg安装教程&#xff1a;https://blog.csdn.net/yushaoyyds/article/details/138855306?spm1001.2014.3001.5502 向量数据库介绍 向量数…

Spring Boot框架助力电商系统设计

2 相关技术 2.1 SpringBoot框架介绍 Spring Boot是一种不需要代码生成的一种框架&#xff0c;并且可以不需要配置任何的XML文件就可以&#xff0c;因为Spring Boot里面自带了很多接口&#xff0c;只需要配置不同的接口就会自动的应用并且识别需要的依赖&#xff0c;在配置方面非…

双十一之夜:珠海体育中心悲剧,极端行为下的反思

双十一&#xff0c;这个原本充满购物狂欢与期待的节日&#xff0c;在珠海市香洲区的珠海市体育中心&#xff0c;被一场突如其来的极端事件所笼罩&#xff0c;让欢乐的氛围即刻凝固。62岁男子的一时冲动&#xff0c;驾车冲撞行人&#xff0c;导致35条宝贵生命戛然而止&#xff0…

常用环境部署(二十三)——Docker部署ERPNext

1、介绍 ERPNext 是一种业务财务集成一体的现代管理关键。 与传统会计和 ERP 相比&#xff0c;它具有许多优势。相对于传统记账软件的优势: ​不仅仅是会计&#xff01; 管理库存、账单、报价、销售线索、工资单等。所有数据存放在同一个地方安全存储&#xff0c; 所有用户都在…

黑马程序员——Vue3小兔鲜项目(5. Home页)

静态结构搭建和分类实现 1. 整体结构创建 1- 按照结构新增五个组件&#xff0c;准备最简单的模版&#xff0c;分别在Home模块的入口组件中引入 HomeCategoryHomeBannerHomeNewHomeHotHomeProduct <script setup> </script><template><div> HomeCate…

nginx部署H5端程序与PC端进行区分及代理多个项目及H5内页面刷新出现404问题。

在项目中会碰见需要在nginx代理多个项目&#xff0c;如果在加上uniapp开发的H5端的项目&#xff0c;你还要在nginx中区分PC端和手机H5端&#xff0c;这就会让人很头大&#xff01;网上大部分的资料都是采用在nginx的conf配置文件中添加区分pc和手机端的变量例如&#xff1a;set…

【miniMax开放平台-注册安全分析报告-无验证方式导致安全隐患】

前言 由于网站注册入口容易被黑客攻击&#xff0c;存在如下安全问题&#xff1a; 暴力破解密码&#xff0c;造成用户信息泄露短信盗刷的安全问题&#xff0c;影响业务及导致用户投诉带来经济损失&#xff0c;尤其是后付费客户&#xff0c;风险巨大&#xff0c;造成亏损无底洞…

除了 Postman,还有什么好用的 API 调试工具吗

尽管 Postman 拥有团队协作等实用特性&#xff0c;其免费版提供的功能相对有限&#xff0c;而付费版的定价可能对小团队或个人开发者而言显得偏高。此外&#xff0c;Postman 的访问速度有时较慢&#xff0c;这可能严重影响使用体验。 鉴于这些限制&#xff0c;Apifox 成为了一…