6.2 对角化矩阵(2)

五、不能对角化的矩阵

假设 λ \lambda λ A A A 的一个特征值,我们从两个方面发现这个事实:

  1. 特征向量(几何的): A x = λ x A\boldsymbol x=\lambda\boldsymbol x Ax=λx 有非零解。
  2. 特征值(代数的): A − λ I A-\lambda I AλI 的行列式为零。

数字 λ \lambda λ 可能是一个单一的特征值也可能是重复的特征值,我们想要知道它的重复数(multiplicity)。大多数特征值的重复度 M = 1 M=1 M=1(单一的特征值),有一条特征向量的直线,且 det ⁡ ( A − λ I ) \det(A-\lambda I) det(AλI) 没有多重因子。
但是也有一些例外的矩阵,它的特征值可能重复(repeated),则有两种不同的方式来计算它的重复度,对于每一个 λ \lambda λ 总是有 GM ≤ AM \textrm{GM}\leq \textrm{AM} GMAM

  1. ( 几何重数 Geometric Multiplicity = GM ) \color{blue}(几何重数\,\textrm{Geometric Multiplicity = GM})\kern 10pt (几何重数Geometric Multiplicity = GM)计算 λ \lambda λ 对应的无关特征向量的个数。则 GM \textrm{GM} GM 就是 A − λ I A-\lambda I AλI 零空间的维度。
  2. ( 代数重数 Algebraic Multiplicity = AM ) \color{blue}(代数重数\,\textrm{Algebraic Multiplicity = AM})\kern 10pt (代数重数Algebraic Multiplicity = AM) AM \textrm{AM} AM 计算的是 λ \lambda λ 在特征值中的重复次数,检验 det ⁡ ( A − λ I ) = 0 \det(A-\lambda I)=0 det(AλI)=0 n n n 个根。

如果 A A A 有特征值 λ = 4 , 4 , 4 \lambda=4,4,4 λ=4,4,4,则特征值有 AM = 3 \textrm{AM}=3 AM=3,且 GM = 1 , 2 \textrm{GM} = 1,2 GM=1,2 3 3 3
下面的矩阵 A A A 是一个标准的麻烦例子,它的特征值 λ = 0 \lambda=0 λ=0 是重复的,这是一个双重特征值( AM = 2 \textrm{AM}=2 AM=2),但是只有一个特征向量 GM = 1 \textrm{GM}=1 GM=1 AM = 2 GM = 1 A = [ 0 1 0 0 ] 有 det ⁡ ( A − λ I ) = ∣ − λ 1 0 − λ ∣ = λ 2 λ = 0 , 0 但是只 有 1 个特征向量 \begin{matrix}\pmb{\textrm{AM}=2}\\\pmb{\textrm{GM}=1}\end{matrix}\kern 15ptA=\begin{bmatrix}0&1\\0&0\end{bmatrix}\,有\,\det(A-\lambda I)=\begin{vmatrix}-\lambda&1\\0&-\lambda\end{vmatrix}=\lambda^2\kern 15pt\begin{matrix}\pmb{\lambda=0,0\,但是只}\\\pmb{有\,1\,个特征向量}\end{matrix} AM=2GM=1A=[0010]det(AλI)= λ01λ =λ2λ=0,0但是只1个特征向量由于 λ 2 = 0 \lambda^2=0 λ2=0 有双重根,所以理论上应该有两个特征向量,双重因子 λ 2 \lambda^2 λ2 使得 AM = 2 \textrm{AM}=2 AM=2,但是只有 1 1 1 个特征向量 x = ( 1 , 0 ) \boldsymbol x=(1,0) x=(1,0) GM = 1 \textrm{GM}=1 GM=1 GM \textrm{GM} GM 小于 AM \textrm{AM} AM 时,此时特征向量的不足使得 A A A 无法对角化。
下面的三个矩阵同样是特征向量不足,它们重复的特征值是 λ = 5 \lambda=5 λ=5,迹是 10 10 10 行列式是 25 25 25 A = [ 5 1 0 5 ] 和 A = [ 6 − 1 1 4 ] 和 A = [ 7 2 − 2 3 ] A=\begin{bmatrix}5&1\\0&5\end{bmatrix}\kern 5pt和\kern 5ptA=\begin{bmatrix}6&-1\\1&\kern 7pt4\end{bmatrix}\kern 5pt和\kern 5ptA=\begin{bmatrix}\kern 7pt7&2\\-2&3\end{bmatrix} A=[5015]A=[6114]A=[7223]这三个矩阵都有 det ⁡ ( A − λ I ) = ( λ − 5 ) 2 \det(A-\lambda I)=(\lambda-5)^2 det(AλI)=(λ5)2,代数重数是 AM = 2 \textrm{AM}=2 AM=2,但是每个 A − 5 I A-5I A5I 的秩都为 1 1 1,所以几何重数是 GM = 1 \textrm{GM}=1 GM=1。对应 λ = 5 \lambda=5 λ=5 的只有一条特征向量的直线,这些矩阵都不能对角化。

六、主要内容总结

  1. 如果 A A A n n n 个无关的特征向量 x 1 , x 2 , ⋯ , x n \boldsymbol x_1,\boldsymbol x_2,\cdots,\boldsymbol x_n x1,x2,,xn,它们进入到 X X X 的列。 A 被 X 对角化 X − 1 A X = Λ 和 A = X Λ X − 1 \pmb{A\,被\,X\,对角化}\kern 15ptX^{-1}AX=\Lambda\kern 5pt和\kern 5ptA=X\Lambda X^{-1} AX对角化X1AX=ΛA=XΛX1
  2. A A A 的幂是 A k = X Λ k X − 1 A^k=X\Lambda^kX^{-1} Ak=XΛkX1,在 X X X 中的特征向量不变。
  3. A k A^k Ak 的特征值是矩阵 Λ k \Lambda^k Λk 中的 ( λ 1 ) k , ( λ 2 ) k , ⋯ , ( λ n ) k (\lambda_1)^k,(\lambda_2)^k,\cdots,(\lambda_n)^k (λ1)k,(λ2)k,,(λn)k
  4. u k + 1 = A u k \boldsymbol u_{k+1}=A\boldsymbol u_k uk+1=Auk u 0 \boldsymbol u_0 u0 开始的解是 u k = A k u 0 = X Λ k X − 1 u 0 \boldsymbol u_k=A^k\boldsymbol u_0=X\Lambda^kX^{-1}\boldsymbol u_0 uk=Aku0=XΛkX1u0
    由 u 0 = c 1 x 1 + c 2 x 2 + ⋯ + c n x n 得到 u k = c 1 ( λ 1 ) k x 1 + c 2 ( λ 2 ) k x 2 + ⋯ + c n ( λ n ) k x n 由\,{\color{blue}\boldsymbol u_0=c_1\boldsymbol x_1+c_2\boldsymbol x_2+\cdots+c_n\boldsymbol x_n}\,得到\,\color{blue}\boldsymbol u_k=c_1(\lambda_1)^k\boldsymbol x_1+c_2(\lambda_2)^k\boldsymbol x_2+\cdots+c_n(\lambda_n)^k\boldsymbol x_n u0=c1x1+c2x2++cnxn得到uk=c1(λ1)kx1+c2(λ2)kx2++cn(λn)kxn这展示了步骤 1 , 2 , 3 1,2,3 1,2,3,其中 c ′ s c's cs 来自于 X − 1 u 0 X^{-1}\boldsymbol u_0 X1u0 λ k \lambda^k λk 来自 Λ k \Lambda^k Λk x ′ s \boldsymbol x's xs 来自 X X X
  5. 如果 A A A 的每个特征值都有足够的特征向量( GM = AM \textrm{GM = AM} GM = AM),则 A A A 可以对角化。

七、例题

例4卢卡斯数字(Lucas numbers)除了从 L 1 = 1 L_1=1 L1=1 L 2 = 3 L_2=3 L2=3 开始之外,其它和斐波那契数一样。它们是同样的规则 L k + 2 = L k + 1 + L k L_{k+2}=L_{k+1}+L_k Lk+2=Lk+1+Lk,后面的卢卡斯数字是 4 , 7 , 11 , 18 4,7,11,18 4,7,11,18。证明卢卡斯数字 L 100 = λ 1 100 + λ 2 100 L_{100}=\lambda_1^{100}+\lambda_2^{100} L100=λ1100+λ2100
解: 和斐波那契数相同,也有 u k + 1 = [ 1 1 1 0 ] u k \boldsymbol u_{k+1}=\begin{bmatrix}1&1\\1&0\end{bmatrix}\boldsymbol u_k uk+1=[1110]uk,因为 L k + 2 = L k + 1 + L k L_{k+2}=L_{k+1}+L_k Lk+2=Lk+1+Lk 是同样的规则(只是不同的起始值),这个方程变成了 2 × 2 2\times2 2×2 的系统:

u k = [ L k + 1 L k ] \color{blue}\boldsymbol u_k=\begin{bmatrix}L_{k+1}\\\\L_k\end{bmatrix} uk= Lk+1Lk ,规则 L k + 2 = L k + 1 + L k L k + 1 = L k + 1 \begin{array}{l}L_{k+2}=L_{k+1}+L_k\\L_{k+1}=L_{k+1}\end{array} Lk+2=Lk+1+LkLk+1=Lk+1 u k + 1 = [ 1 1 1 0 ] u k \color{blue}\boldsymbol u_{k+1}=\begin{bmatrix}1&1\\\\1&0\end{bmatrix}\boldsymbol u_k uk+1= 1110 uk

A = [ 1 1 1 0 ] A=\begin{bmatrix}1&1\\1&0\end{bmatrix} A=[1110] 的特征向量和特征值仍然由 λ 2 = λ + 1 \lambda^2=\lambda+1 λ2=λ+1 得来: λ 1 = 1 + 5 2 和 x 1 = [ λ 1 1 ] λ 2 = 1 − 5 2 和 x 2 = [ λ 2 1 ] \lambda_1=\frac{1+\sqrt5}{2}\,和\,\boldsymbol x_1=\begin{bmatrix}\lambda_1\\1\end{bmatrix}\kern 15pt\lambda_2=\frac{1-\sqrt5}{2}\kern 5pt和\kern 5pt\boldsymbol x_2=\begin{bmatrix}\lambda_2\\1\end{bmatrix} λ1=21+5 x1=[λ11]λ2=215 x2=[λ21]现在求解 c 1 x 1 + c 2 x 2 = u 1 = ( 3 , 1 ) c_1\boldsymbol x_1+c_2\boldsymbol x_2=\boldsymbol u_1=(3,1) c1x1+c2x2=u1=(3,1),解是 c 1 = λ 1 c_1=\lambda_1 c1=λ1 c 2 = λ 2 c_2=\lambda_2 c2=λ2。检验: λ 1 x 1 + λ 2 x 2 = [ λ 1 2 + λ 2 2 λ 1 + λ 2 ] = [ A 2 的迹 A 的迹 ] = [ 3 1 ] = u 1 \lambda_1\boldsymbol x_1+\lambda_2\boldsymbol x_2=\begin{bmatrix}\lambda_1^2+\lambda^2_2\\\lambda_1+\lambda_2\end{bmatrix}=\begin{bmatrix}A^2\,的迹\\A\,的迹\end{bmatrix}=\begin{bmatrix}3\\1\end{bmatrix}=\boldsymbol u_1 λ1x1+λ2x2=[λ12+λ22λ1+λ2]=[A2的迹A的迹]=[31]=u1 u 100 = A 99 u 1 \boldsymbol u_{100}=A^{99}\boldsymbol u_1 u100=A99u1 我们可以得到卢卡斯数 ( L 101 , L 100 ) (L_{101},L_{100}) (L101,L100),特征向量 x 1 \boldsymbol x_1 x1 x 2 \boldsymbol x_2 x2 的第二个分量都是 1 1 1,所以 u 100 \boldsymbol u_{100} u100 的第二个分量是: 卢卡斯数字 L 100 = c 1 λ 1 99 + c 2 λ 2 99 = λ 1 100 + λ 2 100 \boxed{\pmb{卢卡斯数字}\kern 20pt\pmb{L_{100}}=c_1\lambda_1^{99}+c_2\lambda_2^{99}=\pmb{\lambda_1^{100}+\lambda_2^{100}}} 卢卡斯数字L100=c1λ199+c2λ299=λ1100+λ2100卢卡斯数字比斐波那契数开始的要快,最终也要大约 5 \sqrt5 5 倍。

例5】求矩阵 A A A 的逆矩阵、特征值和行列式: A = 5 ∗ eye ( 4 ) − ones ( 4 ) = [ 4 − 1 − 1 − 1 − 1 4 − 1 − 1 − 1 − 1 4 − 1 − 1 − 1 − 1 4 ] A=5*\textrm{\pmb{eye}}(4)-\textrm{\pmb{ones}}(4)=\begin{bmatrix}\kern 7pt4&-1&-1&-1\\-1&\kern 7pt4&-1&-1\\-1&-1&\kern 7pt4&-1\\-1&-1&-1&\kern 7pt4\end{bmatrix} A=5eye(4)ones(4)= 4111141111411114 描述一个特征向量矩阵 X X X,使 X − 1 A X = Λ X^{-1}AX=\Lambda X1AX=Λ
解: 1 1 1 矩阵的特征值是什么?它的秩为 1 1 1,所以三个特征值是 λ = 0 , 0 , 0 \lambda=0,0,0 λ=0,0,0,迹是 4 4 4,所以另一个特征值是 λ = 4 \lambda=4 λ=4,从 5 I 5I 5I 减去全 1 1 1 矩阵得到矩阵 A A A 从 5 , 5 , 5 , 5 减去特征值 4 , 0 , 0 , 0 得到 A 的特征值为 1 , 5 , 5 , 5 。 \color{blue}从\,5,5,5,5\,减去特征值\,4,0,0,0 \,得到\,A\, 的特征值为\,1,5,5,5。 5,5,5,5减去特征值4,0,0,0得到A的特征值为1,5,5,5 A A A 的行列式是四个特征值的乘积,即是 125 125 125 λ = 1 \lambda=1 λ=1 对应的特征向量是 x = ( 1 , 1 , 1 , 1 ) \boldsymbol x=(1,1,1,1) x=(1,1,1,1) ( c , c , c , c ) (c,c,c,c) (c,c,c,c),由于 A A A 是对称矩阵,所以其它的特征向量都垂直于 x \boldsymbol x x。最漂亮的特征向量矩阵 X X X 是对称的正交哈达玛矩阵(Hadamard matrix) H H H 乘上 1 2 \displaystyle\frac{1}{2} 21 得到单位列向量。 标准正交特征向量 X = H = 1 2 [ 1 1 1 1 1 − 1 1 − 1 1 1 − 1 − 1 1 − 1 − 1 1 ] = H T = H − 1 \pmb{标准正交特征向量}\kern 10ptX=H=\frac{1}{2}\begin{bmatrix}1&\kern 7pt1&\kern 7pt1&\kern 7pt1\\1&-1&\kern 7pt1&-1\\1&\kern 7pt1&-1&-1\\1&-1&-1&\kern 7pt1\end{bmatrix}=H^T=H^{-1} 标准正交特征向量X=H=21 1111111111111111 =HT=H1 A − 1 A^{-1} A1 的特征值是 1 , 1 5 , 1 5 , 1 5 1,\displaystyle\frac{1}{5},\frac{1}{5},\frac{1}{5} 1,51,51,51,特征向量不变,所以 A − 1 = H Λ − 1 H − 1 A^{-1}=H\Lambda^{-1}H^{-1} A1=HΛ1H1,逆矩阵惊人的简洁: A − 1 = 1 5 ∗ ( eye ( 4 ) + ones ( 4 ) ) = 1 5 [ 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 ] A^{-1}=\frac{1}{5}*(\pmb{\textrm{eye}}(4)+\pmb{\textrm{ones}}(4))=\frac{1}{5}\begin{bmatrix}2&1&1&1\\1&2&1&1\\1&1&2&1\\1&1&1&2\end{bmatrix} A1=51(eye(4)+ones(4))=51 2111121111211112 A A A 是由 5 I 5I 5I 变化来的秩一矩阵,所以 A − 1 A^{-1} A1 是由 I / 5 I/5 I/5 变化来的秩一矩阵。
在一个有 5 5 5 个节点的图中,行列式 125 125 125 是生成树(spanning trees,接触所有的节点)的个数,树没有回路。
如果有 6 6 6 个节点,矩阵 6 ∗ eye ( 5 ) − ones ( 5 ) 6*\pmb{\textrm{eye}}(5)-\pmb{\textrm{ones}}(5) 6eye(5)ones(5) 5 5 5 个特征值 1 , 6 , 6 , 6 , 6 1,6,6,6,6 1,6,6,6,6

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/13567.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

UCSD:LLM通过工具使用解决科学问题

📖标题:Adapting While Learning: Grounding LLMs for Scientific Problems with Intelligent Tool Usage Adaptation 🌐来源:arXiv, 2411.00412 🌟摘要 🔸大型语言模型(LLMs)在解…

【时间之外】IT人求职和创业应知【34】-人和机器人,机器人更可靠

目录 新闻一:人形机器人产业持续高速增长,2026年中国市场规模将突破200亿元 新闻二:AI技术驱动设备厂商格局变化,部分厂商市占率快速提升 新闻三:华为与江淮汽车携手打造超高端品牌“尊界”,计划于明年春…

MyBatis及相关文件配置

MyBatis是一款优秀的持久层框架,它支持定制化SQL、存储过程以及高级映射。以下是对MyBatis的详细讲解: 一、MyBatis的起源与发展 MyBatis最初是Apache的一个开源项目iBATIS,2010年迁移到Google Code并改名为MyBatis,2013年11月又…

【FastAPI】1-url参数

fastapi的核心功能是提供HTTP请求接口 “幂等”和“非幂等” 幂等(idempotent):如果一个方法重复执行多次,产生的效果是一样的,那么这个方法就是幂等的 “Methods can also have the property of “idempotence” in …

CentOS Stream 9设置静态IP

CentOS Stream 9设置静态IP CentOS Stream 9作为CentOS Stream发行版的下一个主要版本,已经发布有一段时间,但与目前广泛使用的CentOS7有较大区别。安装试用Stream 9的过程中,就发现设置静态IP的方式和CentOS7/8差别较大,在此记录…

机器人学 雅可比矩阵

雅可比矩阵(Jacobian Matrix)是机器人学中一个非常重要的工具,广泛应用于分析机器人末端执行器的速度和力学(静力)关系。理解雅可比矩阵的速度和静力作用对于机器人运动控制、动力学分析以及优化设计具有重要意义。 一…

【蓝桥等考C++真题】蓝桥杯等级考试C++组第13级L13真题原题(含答案)-最小的数

CL13 最小的数(20 分) 输入一个有 n 个无重复元素的整数数组 a&#xff0c;输出数组中最小的数。提示&#xff1a;如使用排序库函数 sort()&#xff0c;需要包含头文件#include 。输入&#xff1a; 第一行一个正整数 n(2<n<20)&#xff1b; 第二行 n 个不重的整数 a[i]…

python数据写入excel文件

主要思路&#xff1a;数据 转DataFrame后写入excel文件 一、数据格式为字典形式1 k e &#xff0c; v [‘1’, ‘e’, 0.83, 437, 0.6, 0.8, 0.9, ‘好’] 1、这种方法使用了 from_dict 方法&#xff0c;指定了 orient‘index’ 表示使用字典的键作为行索引&#xff0c;然…

制作自己的刷题小题库,提高刷题效率

日常刷题 乱序/背题多种模式 组队刷题 查看小组的刷题统计 在线考试 创建考试多人同时答题 ----这是一条分割线----- 土著刷题&#xff0c;是一款可以导入题库的在线刷题学习小&#x1f34a;序&#xff0c;提供一套以【搭建题库-组建小组-刷题练习-在线考试】为中心的完整服务…

在 Oracle Linux 8.9 上安装Oracle Database 23ai 23.5

在 Oracle Linux 8.9 上安装Oracle Database 23ai 23.5 1. 安装 Oracle Database 23ai2. 连接 Oracle Database 23c3. 重启启动后&#xff0c;手动启动数据库4. 重启启动后&#xff0c;手动启动 Listener5. 手动启动 Pluggable Database6. 自动启动 Pluggable Database7. 设置开…

springboot线下培训机构集中管理和推荐平台-计算机毕业设计源码48919

摘 要 该论文研究了一种线下培训机构集中管理和推荐平台的设计与实现。该平台旨在解决传统线下培训机构管理和推荐过程中存在的诸多问题&#xff0c;包括信息不对称、资源分散、推荐不精准等。通过系统性的需求分析和技术调研&#xff0c;设计了一套基于Spring Boot和Vue的前后…

Jmeter中的监听器(一)

监听器 1--查看结果树 用途 调试测试计划&#xff1a;查看每个请求的详细信息&#xff0c;帮助调试和修正测试计划。分析响应数据&#xff1a;查看服务器返回的响应数据&#xff0c;验证请求是否成功。检查错误&#xff1a;识别和分析请求失败的原因。 配置步骤 添加查看结果…

机器学习—多个输出的分类(Optional)

有一种不同类型的分类问题&#xff0c;称为多标签分类问题&#xff0c;与每个图像相关联的地方可能有多个标签。 如果你正在制造一辆自动驾驶汽车或者驾驶辅助系统&#xff0c;然后给你一张车前的照片&#xff0c;你可能想问&#xff0c;比如有没有一辆车或者至少有一辆车还是…

上海市计算机学会竞赛平台2020年4月月赛丙组永恒的生命游戏

题目背景 2020年4月11日&#xff0c;英国数学家 约翰霍顿康威&#xff08;John Horton Conway&#xff09;因为新型冠状病毒肺炎不幸逝世。他在群论、数论、代数、几何拓扑、理论物理、组合博弈论和几何等领域&#xff0c;都做出了重大贡献。他的离去是人类文明的损失。他最著…

SQLI LABS | Less-43 POST-Error Based-String-Stacked With Twist

关注这个靶场的其它相关笔记&#xff1a;SQLI LABS —— 靶场笔记合集-CSDN博客 0x01&#xff1a;过关流程 输入下面的链接进入靶场&#xff08;如果你的地址和我不一样&#xff0c;按照你本地的环境来&#xff09;&#xff1a; http://localhost/sqli-labs/Less-43/ 本关是堆…

UEFI Shell命令(二)

一、Shell 命令行选项 ​-b, -break 每页输出后暂停一会&#xff0c;即分页输出 -q, -quiet 抑制所有的输出 -sfo 标准格式输出 -t, -terse 简洁的输出 -v, -verbose 详细的输出 -&#xff1f; 帮助 二、特殊Shell命令 1、attrib 显示或更改文件或目录的属性 [a | -a] 设置…

【QT常用技术讲解】优化网络链接不上导致qt、qml界面卡顿的问题

前言 qt、qml项目经常会涉及访问MySQL数据库、网络服务器&#xff0c;并且界面打开时的初始化过程就会涉及到链接Mysql、网络服务器获取数据&#xff0c;如果网络不通&#xff0c;卡个几十秒&#xff0c;会让用户觉得非常的不爽&#xff0c;本文从技术调研的角度讲解解决此类问…

【C语言】程序性能优化——除法运算符

【C语言】程序性能优化——除法运算符 文章目录 [TOC](文章目录) 前言一、牛顿迭代法1、数学基础2、C代码3、实验 二、二分法1、数学基础2、C代码3、实验 三、参考资料总结 前言 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 一、牛顿迭代法 1、数学…

每日计划-1109

1. 完成 104. 二叉树的最大深度 class Solution { public:// 计算二叉树的最大深度的函数int maxDepth(TreeNode* root) {// 如果根节点为空&#xff0c;说明已经到达叶子节点的下一层&#xff0c;返回0&#xff08;这里代码中 return false 应该是错误的&#xff0c;应该是 r…

基于YOLOv5的人群密度检测系统设计与实现

大家好&#xff0c;本文将介绍基于改进后的YOLOv5目标检测模型&#xff0c;设计并实现人群密度检测系统。 使用YOLOv5的源代码&#xff0c;在此基础上修改和训练模型&#xff0c; 数据集选用crowdhuman数据集。对yolov5源码中的文件进行修改&#xff0c;更换主干网络、改进损失…