入门车载以太网(4) -- 传输层(TCP\UDP)

目录

1.ECU通信方式的变化

2.传输层概述

2.1 UDP

2.2 TCP

3. TCP和ISO 15765-2


1.ECU通信方式的变化

我们先回顾下两种通信方式:Signal-Based Messaging、Service-Based Messaging。

  • Signal-Based Messaging

基于信号的通信方式,例如CAN通信,这是目前车内ECU应用最广泛的通信方式。这种方式关键的就是通信矩阵(DBC、LDF),需要定义好信号的发送、接收节点,封装到哪条报文,报文的发送周期,这样我们就可以完成车内所有节点的通信开发。

面向信号的通信架构(图片来源:联合电子)

仔细看通信矩阵,我们会发现很多信号都是传递传感器数据,但在如今智能网联汽车中,大量的功能需要ECU间的协调工作来实现,任何微小的功能改动都会引起整车通讯矩阵的改动,这是噩梦,以前做敏捷开发的时候,我晚上睡觉都梦到在更新DBC。所以,传统IT中基于服务的通信方式被引入进来。

  • Service-Based Messaging

基于服务的通信,听起来很抽象,但回想下汽车诊断领域14229的通信方式,Client只需要发送SID来调取各种功能服务,获取结果即可,根本不关心服务内部是如何实现。这种情况下,服务都有一个唯一且互不影响的ID号,通过服务中间件完成自身发布、订阅其他服务和通讯工作。

        面向服务的架构(图片来源:联合电子)

很明显,在传统电子电气面向信号架构(以CAN通信为主)是越来越难满足未来网联汽车的需求;因此在这种背景下,车载以太网被引入,它提供了许多不同级别控制和可靠性的协议。这些协议可以在同一网络上使用不同的软件逻辑连接共存;也有协议如AVB,为音频/视频流等应用程序的数据提供极端延迟保证。

2.传输层概述

车载以太网前3层(物理层、数据链路层、网络层)实现了主机间的通信,物理层通过cables传输比特流,数据链路层传输以太网帧,网络层传输数据报给到目的主机,但是由于ECU可能存在多个进程,具体应该给到哪个进程?这就由传输层来完成。

传输层位于OSI的第4层,主要作用是提供端到端的数据传输,负责两个通信端的会话建立、维护和终止,由于主机IP地址固定,因此在主机进程上新增了本地唯一的端口号,利用Port号在软件层级进行寻址,以保证数据能够正确送到目的进程。

网络层和传输层作用域如下所示:

这一层有两个非常重要的协议:TCP、UDP。

  • UDP:简单、快速,无连接,想象一下广播,及时丢一两帧数据也还是可以接受;
  • TCP:复杂,较慢,包括可靠性,流量控制和其他服务保证。

在前面我们聊到,车载以太网中,IP地址可以表示一个ECU,而端口(Port)则用于表示一个软件进程,如vECU等,TCP、UDP有两个16bit端口地址(source、destination);IP地址+Port = socket(套接字),源、目的地socket可用于表征一个网络连接,那么接下来我们继续研究TCP和UDP。

2.1 UDP

UDP,全称User Datagram Protocol,它提供无连接数据报传输,增进了进程通信能力。其数据报格式如下图:

可以看到,UDP Header定长为8字节,其中,Length指UDP长度,最长64K bytes,但是考虑到IP数据报总长度最大为65535,因此实际一帧UDP最大长度为65535 - 20(IP Header)- 8(UDP Header) = 65507字节。此外,Checksum在UDP/IP协议栈中保证数据完整性的唯一手段。

因此,我们可以总结,UDP主要有以下特点:

  1. 无连接服务:UDP不建立连接,发送数据之前不需要建立连接,发送端和接收端之间可以直接发送和接收数据。

  2. 不可靠性:UDP不保证数据包的顺序、完整性或可靠性。如果数据包在传输过程中丢失或损坏,UDP不会进行重传或重新排序。

  3. 速度快:由于UDP不提供可靠性保证,因此它的速度比TCP快,适合那些对实时性要求高的应用。

  4. 支持多播和广播:UDP支持多播和广播,这使得它适用于需要向多个接收者发送相同数据的应用。

2.2 TCP

TCP,全称Transmission Control Protocol,提供了面向连接、可靠的数据传输服务,保证了端到端的数据传输可靠性,在我看来,它和ISO 15765-2(UDS网络层/TP层)很类似,且听慢慢道来。

TCP不同于其他协议,它天生就带有连接的概念,意味着两个节点要通信,一方必须发起连接请求给到另一方,且该请求还要被接收方接收,从这个角度出发,就可以用client/server 模型来描述。服务请求方叫Client(客户端),服务提供方叫Server(服务器),客户端负责发起请求和接收服务,而服务器负责处理请求和提供服务。

TCP在IP层协议号为0x06,下图是TCP段格式:

  • Sequence Number:Segment的序列号,用于保证数据的按序传输;
  • Acknowledgment Number:指明下一个希望得到的、来自发送方的序列号,所有先前的序列号被确认为收到;
  • Data Offset:TCP Header长度;
  • URG:Signals important information,置1表示有高优先级信息需要传输;
  • ACK:置1表示确认号(Acknowledgment Number)合法;
  • PSH:置1表示当前信息需要紧急处理,接收方不需要缓存,直接传给应用协议;
  • RST:置1表示重置连接;
  • SYN:置1表示建立新的连接,连接请求时SYN置1,ACK置0;连接响应时,SYN=1,ACK=1;
  • FIN:Finish,置1表示释放连接,发送方没有数据发送了。
  • Window Size:该字段16bits,指明TCP接收方缓冲区的长度(以字节为单位);
  • Urgent Pointer:仅URG置1,该字段才有效,用于表示偏移量,索引报文数据部分中最后一个紧急字节。
  • NS、CWR、ECE是最新的TCP标志,分别来源RFC 3540\3168。

 由于TCP是面向连接的协议,但这个连接是软件层面虚拟连接,那就意味着TCP需要来控制这个连接的动作,让源节点和目标节点之间的这条虚拟通道畅通无阻,同时还要确保丢失、损坏的报文可以容易重发。因此,面试八股文:“三次握手建立连接,四次握手关闭连接”就来了。

三次握手建立连接如下图所示:

建立完成后,双方都将ACK置位,交换并确认了对方的初始序列号,就可以通过连接互相传输数据。

那为什么要三次握手才能建立连接?本来只需要一问一答即可建立,但实际网络通信可能出现丢帧或者响应丢失,这时候Client再次发起连接请求,通过重传连接,但这又导致了重复连接,三次握手要求对所有报文进行编号,每次建立连接时都产生一个新的序列号,这样可以避免上述问题。

四次握手关闭连接与握手类似,只是标志位不一样;

(1)客户端发送ACK+FIN给服务器;(2)服务器回复ACK;(3)服务器回复ACK+FIN给客户端;(4)客户端回复ACK

3. TCP和ISO 15765-2

既然前面讲过了TCP和ISO 15765-2类似,我们来看看它们之间的差异。

建立连接阶段:ISO 15762-2 是一次握手建立连接,客户端发送带有长消息标志、总字节数和前几个字节的初始帧,服务器发送流控帧用于控制数据传输速率、告诉在发送方必须等待接收方的另一个流量控制帧之前发送多少帧;TCP则需要三次握手,通过SYN\ACK来建立连接;

流控制:TCP内置了流控制机制(如滑动窗口协议),而ISO15765-2通过N_PCI中的流控制帧(FC)来实现流控制

断开连接阶段:ISO15765-2是在所有数据传完后断开,TCP则需要四次握手,需要FIN\ACK来确认断开连接。

此外,TCO还提供了多种标志位,用于处理各种突发情况,总体来说比较完善。总结来说,TCP是一种通用的、面向连接的传输层协议,而ISO15765-2是一种专门针对CAN总线的网络层协议,虽然很类似,但在寻址方式、通信机制还是有一定的区别。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/12237.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

软件测试第二篇软件测试技术

第五章单元测试和集成测试的技术 单元静态测试主要由开发人员完成。 标准:规定什么能做,什么不能做。 规范:建议你要怎么做。 5.1.2 代码评审 代码评审是一种发现代码缺陷的另一种测试方法。 代码审查的最佳实践: 创建代码审…

w035基于web的学科竞赛管理

🙊作者简介:拥有多年开发工作经验,分享技术代码帮助学生学习,独立完成自己的项目或者毕业设计。 代码可以查看文章末尾⬇️联系方式获取,记得注明来意哦~🌹赠送计算机毕业设计600个选题excel文件&#xff0…

导航系统非完整性约束汽车运动公约

Back to FDISYSTEMS Knowledge Base 惯性&导航传感器 导航系统&运动约束 数学基础 & 约定 参考坐标系载体 & 传感器坐标系方向/旋转表示非线性卡尔曼滤波器SPKF汽车运动公约船舶运动公约 惯性传感器安装 惯性传感器运行 技术洞察 Knowledge Base /数学基础…

Centos8 安装 JDK / Python / MySQL / Redis / Nginx

安装 JDK 华为镜像 JDK 下载地址:https://repo.huaweicloud.com:8443/artifactory/java-local/jdk/ 这里安装 JDK8 为例: # 这里直接通过 wget 下载 wget https://repo.huaweicloud.com:8443/artifactory/java-local/jdk/8u202-b08/jdk-8u202-linux-x…

【Qt-ROS开发】使用 Qt Creator 构建和编译含 ROS 库的 Qt 项目

【Qt-ROS】使用 Qt Creator 构建和编译含 ROS 库的项目 网上大多数办法是在 Qt creator中安装 ros_qtc_plugin 插件,项目以 ROS1 工作空间的形式构建,还是使用 catkin 来构建整个项目。但是这种方式局限很大,导入 Qt 的组件反而变得很麻烦&a…

【RabbitMQ】07-业务幂等处理

1. 方式一 序列化设置唯一Id。 Beanpublic MessageConverter messageConverter() {Jackson2JsonMessageConverter jjmc new Jackson2JsonMessageConverter();jjmc.setCreateMessageIds(true);return jjmc;}RabbitListener(bindings QueueBinding(value Queue(name "d…

SparseDrive 论文学习

论文链接:https://arxiv.org/pdf/2405.19620 代码链接:https://github.com/swc-17/SparseDrive 解决了什么问题? 传统模块化的自动驾驶系统可以被解耦为不同的独立模块,如感知、预测和规划,这种范式会面临信息丢失和…

如何提高自动驾驶中惯性和卫星组合导航pbox的精度?

Mems纯惯导里程推算精度做到千分之一,两分钟航向精度保持0.001弧度,是如何做到的? 简单的来说,导航系统的误差来源于这三方面:1.传感器误差 2.时间和迭代频率 3.算法精度。 接下来逐一分析。 1.传感器误差,传感器误差…

机器学习——贝叶斯

🌺历史文章列表🌺 机器学习——损失函数、代价函数、KL散度机器学习——特征工程、正则化、强化学习机器学习——常见算法汇总机器学习——感知机、MLP、SVM机器学习——KNN机器学习——贝叶斯机器学习——决策树机器学习——随机森林、Bagging、Boostin…

20241111,LeetCode 每日一题,用 Go 实现旋转链表

题目 给你一个链表的头节点 head ,旋转链表,将链表每个节点向右移动 k 个位置。 解题思路 计算链表长度:遍历链表来获取链表的长度 n,因为链表的旋转其实是循环移动,所以将 k 对 n 取模 k k % n,这样可以…

Linux驱动开发(4):Linux的设备模型

在前面写的驱动中,我们发现编写驱动有个固定的模式只有往里面套代码就可以了,它们之间的大致流程可以总结如下: 实现入口函数xxx_init()和卸载函数xxx_exit() 申请设备号 register_chrdev_region() 初始化字符设备,cdev_init函数…

在线项目管理系统有哪些选择?2024年9款推荐

本文提及的2024值得关注的9款在线项目管理系统有: 1.PingCode; 2.Worktile; 3.华炎魔方; 4.企业微信; 5.Tapd; 6.青云客; 7.ClickUp; 8.Wrike; 9.Smartsheet。 许多企业在选择在线项…

pytorch量化训练

训练时量化(Quantization-aware Training, QAT)是一种在模型训练过程中,通过模拟低精度量化效应来增强模型对量化操作的鲁棒性的技术。与后训练量化不同,QAT 允许模型在训练过程中考虑到量化引入的误差,从而在实际部署…

datastage在升级版本到11.7之后,部分在11.3上正常执行的SP报错SQLSTATE = 22007: 本机错误代码 = -180

在升级版本到11.7之后,部分在11.3上正常执行的SP开始报错,报的SQL错误是时间参数问题,但是一样的SP可以直接call sp执行,也可以手动调用作业执行,只有设置定时调度时作业会报错, CALLXXX.XXX(1,CURRENT TIM…

Windows VSCode .NET CORE WebAPI Debug配置

1.安装C#插件 全名C# for Visual Studio Code,选择微软的 2. 安装C# Dev Kit插件 全名C# Dev Kit for Visual Studio Code,同样是选择微软的 3.安装Debugger for Unity 4.配置launch.json 文件 {"version": "0.2.0","config…

Docker使用docker-compose一键部署nacos、Mysql、redis

下面是一个简单的例子,展示如何通过Docker Compose文件部署Nacos、MySQL和Redis。请确保您的机器上已经安装了Docker和Docker Compose。 1,准备好mysql、redis、nacos镜像 sudo docker pull mysql:8 && sudo docker pull redis:7.2 &&…

【模块一】kubernetes容器编排进阶实战之k8s基础概念

kubernetes 基本介绍 kubernetes 组件简介 - master: 主人,并不部署服务,而是管理salve节点。 后期更名为: controll plane,控制面板。 etcd: 2379(客户端通信)、2…

【MPC-Simulink】EX04 信号归一化简化权重调节过程与提高数值计算质量

【MPC-Simulink】EX04 信号归一化简化权重调节过程与提高数值计算质量 参考 Matlab 官网提供的 Model Predictive Control Toolbox - Getting Started Guide,在 MPC 控制器中指定缩放因子,可以简化权重调节过程,提高数值计算质量。 当被控对…

Dubbo分布式日志跟踪实现

前言 随着越来越多的应用逐渐微服务化后,分布式服务之间的RPC调用使得异常排查的难度骤增,最明显的一个问题,就是整个调用链路的日志不在一台机器上,往往定位问题就要花费大量时间。如何在一个分布式网络中把单次请求的整个调用日…

企业网络转型:优势与挑战

◎ 网络研究观 事实上,现代企业网络是一个由相互连接的数据、应用程序和基础设施组成的复杂网络。然而,企业不应让这种复杂性成为服务不可靠、安全漏洞或网络停机的借口。 由于组织和公司面临着从并购到云扩展的诸多挑战,以及网络技术日益复…