iPhone 16 还剩一个月,微软开源新技术让手机以 6 倍速度提前跑上大模型

作者 | 微软亚洲研究院

责编 | 王启隆

出品 | AI 科技大本营(ID:rgznai100)

随着人工智能技术的飞速发展,将大语言模型(LLMs)部署到边缘设备上已成为当前 AI 领域的一个热门趋势。这一趋势不仅体现在微软 Windows 11 AI + PC 等产品中,也反映了整个行业对增强设备本地智能的追求。然而,在资源受限的端侧设备上部署庞大的语言模型并非易事,这需要在模型性能和硬件限制之间寻求平衡。

回顾过去几年的发展历程,我们可以看到端侧 AI 部署经历了几个关键阶段:

1. 早期尝试(2019-2020):在 ChatGPT 都还没问世的那些年,研究人员主要关注如何将较小的神经网络模型(如 MobileNet)部署到移动设备上。这个阶段的主要挑战是如何在有限的计算资源下保持模型的准确性。

2. 量化技术的兴起(2020-2021):随着模型规模的增大,量化技术开始受到广泛关注。Google 的研究团队在 TensorFlow Lite 框架中引入了动态范围量化,而 ARM 则推出了用于神经网络推理的 CMSIS-NN 库。

3. 大语言模型的挑战(2022-至今):随着大语言模型的出现,如何在端侧设备上部署这些庞大的模型成为了新的挑战。苹果、谷歌、华为等科技巨头都在积极探索将 LLMs 部署到移动设备的方法。例如,苹果在iOS 17 中引入了本地运行的语言模型,而谷歌则在 Pixel 设备上部署了 Gemini Nano 模型,实现了部分 AI 功能的本地化。

以消费者的视角观察,今年 9 月的苹果发布会,可能就是端侧 AI 的第一次大规模面世了。但问题接踵而至:从舆情的角度来看,国行 iPhone 怎么办?不用 iPhone 和 Pixel 手机的人要怎么体验端侧大模型?从技术的角度来看,目前部署的大语言模型多会量化到低比特。而低比特 LLMs 在推理过程中需要进行低精度权重和高精度激活向量的混合精度矩阵乘法(mpGEMM)。

现有的系统由于硬件缺乏对 mpGEMM 的原生支持,不得不将权重反量化以进行高精度计算。这种间接的方式导致了显著的推理开销,并且无法随着比特数进一步降低而获得加速。

面对这些挑战,一些研究者开始思考:是否存在一种方法,可以同时解决低比特计算、混合精度问题,并且不依赖专用硬件?这种思考引导他们将目光投向了一个看似简单却颇具潜力的方向:查找表(Look-Up Table,LUT)。

查找表是计算机科学中一个古老而基础的概念。通过预先计算并存储结果,查找表可以将复杂的计算转化为简单的内存访问,这在某些情况下可以显著提高计算速度。那么,这个概念是否可以应用到大模型的端侧部署中呢?

基于这一思想,微软亚洲研究院的研究团队开发了 T-MAC(Table-based Matrix-vector multiplication Accelerator)。T-MAC 巧妙地破解替换表的概念应用到了矩阵乘法中,为端侧大模型提供了一套全新的解决方案。

6b30d513f866caecafd5efc8968dae0c.png

在 CPU 上高效部署低比特大语言模型

当前大模型的部署普遍依赖于专用加速器,如 NPU 和 GPU 等,而 T-MAC 可以摆脱专用加速器的依赖,仅利用 CPU 部署 LLMs,推理速度甚至能够超过同一片上的专用加速器,使 LLMs 可以部署在各类包括 PC、手机、树莓派等边缘端设备。

T-MAC的关键创新在于采用基于查找表(LUT)的计算范式,而非传统的乘累加(MAC)计算范式。T-MAC 利用查找表直接支持低比特计算,从而消除了其他系统中必须的反量化(dequantization)操作,并且显著减少了乘法和加法操作的数量。

经过实验,T-MAC 展现出了卓越的性能:在配备了最新高通 Snapdragon X Elite 芯片组的 Surface AI PC 上,3B BitNet-b1.58 模型的生成速率可达每秒 48 个 token,2bit 7B llama 模型的生成速率可达每秒 30 个 token,4bit 7B llama 模型的生成速率可达每秒 20 个 token。这甚至超越了 NPU 的性能。

当部署 llama-2-7b-4bit 模型时,尽管使用 NPU 可以生成每秒 10.4 个 token,但 CPU 在 T-MAC 的助力下,仅使用两核便能达到每秒 12.6 个 token,最高甚至可以飙升至每秒 22 个 token。都远超人类的平均阅读速度,相比于原始的 llama.cpp 框架提升了  4  至  5  倍。

即使在较低端的设备如 Raspberry Pi 5 上,T-MAC 针对 3B BitNet-b1.58 也能达到每秒 11 个 token 的生成速率。T-MAC 也具有显著的功耗优势:达到相同的生成速率,T-MAC 所需的核心数仅为原始 llama.cpp 的 1/4 至 1/6,降低能耗的同时也为其它应用留下计算资源。

值得注意的是,T-MAC 的计算性能会随着比特数的降低而线性提高,这一现象在基于反量化去实现的 GPU 和 NPU 中是难以观察到的。但 T-MAC 能够在 2 比特下实现单核每秒 10 个 token,四核每秒 28 个 token,大大超越了 NPU 的性能。

13913ea7ff7c153bad262c6bd029e76c.gif

图 1  BitNet on T-MAC vs llama.cpp on Apple M2

5d139972d05865cb6330714baab2351a.png

图 2  在不同端侧设备 CPU(Surface Laptop 7, NVIDIA AGX Orin, Apple M2-Ultra)的各核数下,T-MAC 和 llama.cpp 的 token 生成速度可达 llama.cpp 的 4-5 倍。达到相同的生成速率,T-MAC 所需的核心数仅为原始 llama.cpp 的 1/4 至 1/6。

b320b1c2067c9f7d190085cfff9ee4f1.png

矩阵乘不需乘,只需查表 (LUT)

对于低比特参数 (weights),T-MAC 将每一个比特单独进行分组(例如,一组 4 个比特),这些比特与激活向量相乘,预先计算所有可能的部分和,然后使用 LUT 进行存储。之后,T-MAC 采用移位和累加操作来支持从1到4的可扩展位数。通过这种方法,T-MAC 抛弃了 CPU 上效率不高的 FMA(乘加)指令,转而使用功耗更低效率也更高的 TBL/PSHUF(查表)指令。

aa59bee9d6e45ee83db2b33621b683e4.png

图 3  混合精度 GEMV 基于现有反量化的实现范式 vs T-MAC 基于查找表的新范式

b83706f9f4871fb227bb06727dd56545.png

以比特为核心的计算,取代以数据类型为核心的计算

传统的基于反量化的计算,实际上是以数据类型为核心的计算,这种方式需要对每一种不同的数据类型单独定制。每种激活和权重的位宽组合,如 W4A16(权重 int4 激活 float16)和 W2A8,都需要特定的权重布局和计算内核。例如,W3 的布局需要将 2 位和另外 1 位分开打包,并利用不同的交错或混洗方法进行内存对齐或快速解码。然后,相应的计算内核需要将这种特定布局解包到硬件支持的数据类型进行执行。 

而 T-MAC 通过从比特的视角观察低比特矩阵乘计算,只需为单独的一个比特设计最优的数据结构,然后通过堆叠的方式扩展到更高的 2/3/4 比特。同时,对于不同精度的激活向量(float16/float32/int8),仅有构建表的过程需要发生变化,在查表的时候不再需要考虑不同的数据结构。

1ca5c684122739f26c001dddda062a51.png

图 4  以比特为核心的查表计算混合精度 GEMV

同时,传统基于反量化的方法,从 4-比特降低到 3/2/1-比特时,尽管内存占用更少,但是计算量并未减小,而且由于反量化的开销不减反增,性能反而可能会更差。但 T-MAC 的计算量随着比特数降低能够线性减少,从而在更低比特带来更好加速,为最新的工作 BitNet, EfficientQAT 等发布的 1-比特/ 2-比特模型提供了高效率的部署方案。

2b80f8e3bb2f4f717de797ba0ef82ca3.png

图 5  GEMV 使用不同端侧设备 CPU 的单核,T-MAC 在 4 到 1 比特的混合精度 GEMV 算子相较 llama.cpp 加速 3 - 11 倍。T-MAC 的 GEMM 耗时能随着比特数减少线性减少,而基于反量化的 llama.cpp 无法做到(1 比特 llama.cpp 的算子性能由其 2 比特实现推算得到)。

cf9bc094c4a7095551291c4173a496db.png

高度优化的算子实现

基于比特为核心的计算具有许多优势,但将其实现在 CPU 上仍具有不小的挑战:(i)与激活和权重的连续数据访问相比,表的访问是随机的。表在快速片上内存中的驻留对于最终的推理性能尤为重要,(ii) 然而,片上内存是有限的,查找表(LUT)方法相比传统的 mpGEMV 增大了片上内存的使用。这是因为查找表需要保存激活向量与所有可能的位模式相乘的结果。这比激活本身要多得多。

74c28a3c84f8e301df1b5b18ba95ef1b.png

图 6  T-MAC 与 llama.cpp 在计算数据流上的不同

为此,微软亚洲研究院的研究员们深入探究了基于查表的计算数据流,为这种计算范式设计了高效的数据结构和计算流程,其中包括: 

1. 将 LUT 存入片上内存,以利用 CPU 上的查表向量指令 (TBL/PSHUF) 提升随机访存性能。 

2. 改变矩阵 axis 计算顺序,以尽可能提升放入片上内存的有限 LUT 的数据重用率。 

3. 为查表单独设计最优矩阵分块 (Tiling) 方式,结合 autotvm 搜索最优分块参数 

4. 参数 weights 的布局优化:

    a) weights 重排,以尽可能连续访问并提升缓存命中率;

    b) weights 交错,以提升解码效率;

5. 对 Intel/ARM CPU 做针对性优化,包括:

    a) 寄存器重排以快速建立查找表;

    b) 通过取平均数指令做快速 8-比特累加。

研究员们在一个基础实现上,一步步应用各种优化,最终相对于 SOTA 低比特算子获得显著加速:

24f2de85b4981d4d576c7a601ebd7afe.png

图 7  在实现各种优化后,T-MAC 4-比特算子最终相对于 llama.cpp 获得显著加速

相关链接:

代码:https://github.com/microsoft/T-MAC

论文:https://www.arxiv.org/pdf/2407.00088

70fd6752b93f42163f78044d782345cd.gif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/148472.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

【Qualcomm】高通SNPE框架简介、下载与使用

说明:基础内容!不建议订阅!不建议订阅!不建议订阅! 目录 一 高通SNPE框架 1 SNPE简介 2 QNN与SNPE 3 Capabilities 4 工作流程 二 SNPE的安装与使用 1 下载 2 Setup 3 SNPE的使用概述 一 高通SNPE框架 1 SNP…

Axure精选各类组件案例集锦:设计灵感与实战技巧

在设计大屏页面时,设计师们面临着如何构建丰富、直观且用户友好的界面的挑战。幸运的是,Axure等强大的原型设计工具提供了丰富的可视化组件库,为设计师们提供了无限的设计灵感和实战技巧。本文将通过精选的各类组件案例,探讨大屏设…

综合题第二题(路由器的配置)

题目 如何计算子网掩码 我们可以观察到上图的IP地址后面有“/26”、“30”。我们都知道子网掩码是由多个连续“1”和多个连续“0”组成的,“、26”表示子网掩码的二进制表达中有26个1。 例如:156.95.9.128/26 1111 1111.1111 1111.1111 1111.1100 0000…

摒弃“流量思维”,以精准流量驱动企业发展——基于开源 AI 智能名片、链动 2+1 模式及 O2O 商城小程序的思考

摘要:本文深入探讨在当前竞争激烈的营销环境下,摒弃“流量思维”的紧迫性与必要性。强调做内容营销不能仅仅局限于发文案,而应摆脱一味追求阅读量、推荐量和粉丝数的误区,聚焦于获取精准流量。结合开源 AI 智能名片、链动 21 模式…

??实验——完全使用Ansible部署多台服务器的服务

文章目录 需求两台Web服务器部署同一Web应用WeCenter,且两台服务器的用户上传的数据目录挂载到共享存储服务器中,总数据保存在一台数据库服务器中使用sersync简单实现两台共享存储服务器之间的Web应用共享数据目录的数据同步每天定时将两台Web服务器的We…

中国中车在线测评考的啥?大易题库如何通过|附真题型国企题库通关秘籍和攻略

言语理解题目:这类题目主要考察你的语言理解和表达能力,例如,给你一个段落,让你根据段落内容选择最合适的答案。要点是快速捕捉文段中的关键信息,理解作者的意图和观点 逻辑推理题目:这类题目需要你从一组…

盘点那些功能强大的思维导图在线工具,你用过几个

如果我们日常遇到比较繁杂的信息需要梳理,那我比较推荐使用思维导图在线工具进行梳理。这些工具可以通过图形化的方式展示各种信息之间的关系。这篇文章我将要介绍几款好用的思维导图工具帮我们更好的组织思维。 1.福晰思维导图 链接一下:https://www.…

RAG技术全面解析:Langchain4j如何实现智能问答的跨越式进化?

LLM 的知识仅限于其训练数据。如希望使 LLM 了解特定领域的知识或专有数据,可: 使用本节介绍的 RAG使用你的数据对 LLM 进行微调结合使用 RAG 和微调 1 啥是 RAG? RAG 是一种在将提示词发送给 LLM 之前,从你的数据中找到并注入…

记录:ubuntu20.04的安装和必要的开发准备

记录ubuntu20.04的安装和必要的开发准备 准备1. 安装ubuntu20.04时的Tips2. 屏幕亮度调节问题3. 解决 "No Wi-Fi Adapter Found"4. Nvidia Driver && cuda5. 修改安装源6. ssh 远程开发 准备 没有装双系统,只有 ubuntu20.04,记录安装之…

微服务--Gateway网关

在微服务架构中,Gateway(网关)是一个至关重要的组件,它扮演着多种关键角色,包括路由、负载均衡、安全控制、监控和日志记录等。 Gateway网关的作用 统一访问入口: Gateway作为微服务的统一入口&#xff0c…

HTTP协议1.1请求头和keep-alive

请求头分类 End-to-end(端对端) 必须全部带给目标服务器,不会被中途变化或去掉 Hop-by-hop(逐跳头) 比如客户端发请求,要路过代理(例如Nginx),头可以被自动删掉,来到真正服务器上…

IAR创建工程与工程配置

第一步:先创建一个新的工作区间 第二步:创建一个新的工程(工程名与文件夹名字要一致) 第三步:添加组 第四步:往各个组里添加文件 第五步:配置工程 因为我的程序下载是通过ST-link的SWD&#xf…

正向科技|格雷母线定位系统的设备接线安装示范

格雷母线安装规范又来了,这次是设备接线步骤 格雷母线是格雷母线定位系统的核心部件,沿着移动机车轨道方向上铺设,格雷母线以相互靠近的扁平状电缆与天线箱电磁偶合来进行信号传递,从而检测得到天线箱在格雷母线长度方向上的位置。…

C++ | Leetcode C++题解之第432题全O(1)的数据结构

题目&#xff1a; 题解&#xff1a; class AllOne {list<pair<unordered_set<string>, int>> lst;unordered_map<string, list<pair<unordered_set<string>, int>>::iterator> nodes;public:AllOne() {}void inc(string key) {if (…

安卓13删除下拉栏中的设置按钮 android13删除设置按钮

总纲 android13 rom 开发总纲说明 文章目录 1.前言2.问题分析3.代码分析4.代码修改5.编译6.彩蛋1.前言 顶部导航栏下拉可以看到,底部这里有个设置按钮,点击可以进入设备的设置页面,这里我们将更改为删除,不同用户通过这个地方进入设置。也就是下面这个按钮。 2.问题分析…

[Unity Demo]从零开始制作空洞骑士Hollow Knight第九集:制作小骑士基本的攻击行为Attack以及为敌人制作生命系统和受伤系统

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、制作小骑士基本的攻击行为Attack 1.制作动画以及使用UNITY编辑器编辑2.使用代码实现扩展新的落地行为和重落地行为3.使用状态机实现击中敌人造成伤害机制二…

前端vue-3种生命周期,只能在各自的领域使用

上面的表格可以简化为下面的两句话&#xff1a; setup是语法糖&#xff0c;下面的两个import导入是vue3和vue2的区别&#xff0c;现在的vue3直接导入&#xff0c;比之前vue2简单 还可以是导入两个生命周期函数

kafka负载均衡迁移(通过kafka eagle)

在grafana监控中发现kafka的各个节点磁盘不均匀 出现这样的情况是因为kafka默认是以文件数作为平衡的条件的。换句话说&#xff0c;kafka不会管一个副本有多大&#xff0c;只会看磁盘中有多少个副本文件。 解决方式&#xff1a; 1、修改策略&#xff0c;改为按照磁盘大小平衡…

闯关leetcode——69. Sqrt(x)

大纲 题目地址内容 解题代码地址 题目 地址 https://leetcode.com/problems/sqrtx/description/ 内容 Given a non-negative integer x, return the square root of x rounded down to the nearest integer. The returned integer should be non-negative as well. You mu…

《动手学深度学习》笔记1.10——激活函数←模型初始化←数值稳定性

目录 1. 数值稳定性 1.1 神经网络的梯度 1.2 数值稳定性的常见两个问题 1.3 梯度爆炸 1.3.1 MLP的例子 1.3.2 使用ReLU激活函数 1.3.3 产生的问题 1.4 梯度消失 1.4.1 使用sigmoid激活函数 1.4.2 梯度消失的问题 1.5 总结 2. 让训练更稳定 2.1 目标 (ResNet, LSTM…