RAG技术全面解析:Langchain4j如何实现智能问答的跨越式进化?

LLM 的知识仅限于其训练数据。如希望使 LLM 了解特定领域的知识或专有数据,可:

  • 使用本节介绍的 RAG
  • 使用你的数据对 LLM 进行微调
  • 结合使用 RAG 和微调

1 啥是 RAG?

RAG 是一种在将提示词发送给 LLM 之前,从你的数据中找到并注入相关信息的方式。这样,LLM 希望能获得相关的信息并利用这些信息作出回应,从而减少幻觉概率。

可通过各种信息检索方法找到相关信息。这些方法包括但不限于:

  • 全文(关键词)搜索。该方法使用 TF-IDF 和 BM25 等技术,通过匹配查询(例如用户提问)中的关键词与文档数据库中的内容来搜索文档。它根据这些关键词在每个文档中的频率和相关性对结果进行排名
  • 向量搜索,也称“语义搜索”。文本文档通过嵌入模型转换为数值向量。然后根据查询向量与文档向量之间的余弦相似度或其他相似度/距离度量,查找并对文档进行排名,从而捕捉更深层次的语义含义
  • 混合搜索。结合多种搜索方法(例如全文搜索 + 向量搜索)通常能提高搜索效果

本文主要关注向量搜索。全文搜索和混合搜索目前仅通过 Azure AI Search 集成支持,详情参见 AzureAiSearchContentRetriever。计划在不久的将来扩展 RAG 工具箱,以包含全文搜索和混合搜索。

2 RAG 的阶段

RAG 过程分为两个不同阶段:索引和检索。LangChain4j 提供用于两个阶段的工具。

2.1 索引

文档会进行预处理,以便在检索阶段实现高效搜索。

该过程可能因使用的信息检索方法而有所不同。对向量搜索,通常包括清理文档,利用附加数据和元数据对其进行增强,将其拆分为较小的片段(即“分块”),对这些片段进行嵌入,最后将它们存储在嵌入存储库(即向量数据库)。

通常在离线完成,即用户无需等待该过程的完成。可通过例如每周末运行一次的定时任务来重新索引公司内部文档。负责索引的代码也可以是一个仅处理索引任务的单独应用程序。

但某些场景,用户可能希望上传自定义文档以供 LLM 访问。此时,索引应在线进行,并成为主应用程序的一部分。

索引阶段的简化流程图

2.2 检索

通常在线进行,当用户提交一个问题时,系统会使用已索引的文档来回答问题。

该过程可能会因所用的信息检索方法不同而有所变化。对于向量搜索,通常包括嵌入用户的查询(问题),并在嵌入存储库中执行相似度搜索。然后,将相关片段(原始文档的部分内容)注入提示词并发送给 LLM。

检索阶段的简化流程图

3 简单 RAG

LangChain4j 提供了“简单 RAG”功能,使你尽可能轻松使用 RAG。无需学习嵌入技术、选择向量存储、寻找合适的嵌入模型、了解如何解析和拆分文档等操作。只需指向你的文档,LangChain4j 就会自动处理!

若需定制化RAG,请跳到rag-apis。

当然,这种“简单 RAG”的质量会比定制化 RAG 设置的质量低一些。然而,这是学习 RAG 或制作概念验证的最简单方法。稍后,您可以轻松地从简单 RAG 过渡到更高级的 RAG,逐步调整和自定义各个方面。

3.1 导入 langchain4j-easy-rag 依赖

<dependency><groupId>dev.langchain4j</groupId><artifactId>langchain4j-easy-rag</artifactId><version>0.34.0</version>
</dependency>

3.2 加载文档

List<Document> documents = FileSystemDocumentLoader.loadDocuments("/home/langchain4j/documentation");

这将加载指定目录下的所有文件。

底层发生了什么?

Apache Tika 库被用于检测文档类型并解析它们。由于我们没有显式指定使用哪个 DocumentParser,因此 FileSystemDocumentLoader 将加载 ApacheTikaDocumentParser,该解析器由 langchain4j-easy-rag 依赖通过 SPI 提供。

咋自定义加载文档?

若想加载所有子目录中的文档,可用 loadDocumentsRecursively

List<Document> documents = FileSystemDocumentLoader.loadDocumentsRecursively("/home/langchain4j/documentation");

还可通过使用 glob 或正则表达式过滤文档:

PathMatcher pathMatcher = FileSystems.getDefault().getPathMatcher("glob:*.pdf");
List<Document> documents = FileSystemDocumentLoader.loadDocuments("/home/langchain4j/documentation", pathMatcher);

使用 loadDocumentsRecursively 时,可能要在 glob 中使用双星号(而不是单星号):glob:**.pdf

3.3 预处理

并将文档存储在专门的嵌入存储中也称向量数据库。这是为了在用户提出问题时快速找到相关信息片段。可用 15+ 种支持的嵌入存储,但为简化操作,使用内存存储:

InMemoryEmbeddingStore<TextSegment> embeddingStore = new InMemoryEmbeddingStore<>();
EmbeddingStoreIngestor.ingest(documents, embeddingStore);
底层发生了啥?
  • EmbeddingStoreIngestor 通过 SPI 从 langchain4j-easy-rag 依赖中加载 DocumentSplitter。每个 Document 被拆分成较小的片段(即 TextSegment),每个片段不超过 300 个 token,且有 30 个 token 的重叠部分。
  • EmbeddingStoreIngestor 通过 SPI 从 langchain4j-easy-rag 依赖中加载 EmbeddingModel。每个 TextSegment 都使用 EmbeddingModel 转换为 Embedding

选择 bge-small-en-v1.5 作为简单 RAG 的默认嵌入模型。该模型在 MTEB 排行榜 上取得了不错的成绩,其量化版本仅占用 24 MB 空间。因此,我们可以轻松将其加载到内存中,并在同一进程中通过 ONNX Runtime 运行。

可在完全离线的情况下,在同一个 JVM 进程中将文本转换为嵌入。LangChain4j 提供 5 种流行的嵌入模型开箱即用。

  1. 所有 TextSegmentEmbedding 对被存储在 EmbeddingStore

  2. 创建一个AI 服务,它将作为我们与 LLM 交互的 API:

interface Assistant {String chat(String userMessage);
}ChatLanguageModel chatModel = OpenAiChatModel.builder().apiKey(System.getenv("OPENAI_API_KEY")).modelName(GPT_4_O_MINI).build();Assistant assistant = AiServices.builder(Assistant.class).chatLanguageModel(chatModel).chatMemory(MessageWindowChatMemory.withMaxMessages(10)).contentRetriever(EmbeddingStoreContentRetriever.from(embeddingStore)).build();

配置 Assistant 使用 OpenAI 的 LLM 来回答用户问题,记住对话中的最近 10 条消息,并从包含我们文档的 EmbeddingStore 中检索相关内容。

  1. 对话!
String answer = assistant.chat("如何使用 LangChain4j 实现简单 RAG?");

4 访问源信息

如希望访问增强消息的检索源,可将返回类型包装在 Result 类中:

interface Assistant {Result<String> chat(String userMessage);
}Result<String> result = assistant.chat("如何使用 LangChain4j 实现简单 RAG?");String answer = result.content();
List<Content> sources = result.sources();

流式传输时,可用 onRetrieved() 指定一个 Consumer<List<Content>>

interface Assistant {TokenStream chat(String userMessage);
}assistant.chat("如何使用 LangChain4j 实现简单 RAG?").onRetrieved(sources -> ...).onNext(token -> ...).onError(error -> ...).start();

5 RAG API

LangChain4j 提供丰富的 API 让你可轻松构建从简单到高级的自定义 RAG 流水线。本节介绍主要的领域类和 API。

5.1 文档(Document)

Document 类表示整个文档,例如单个 PDF 文件或网页。当前,Document 只能表示文本信息,但未来的更新将支持图像和表格。

package dev.langchain4j.data.document;/*** 表示通常对应于单个文件内容的非结构化文本。此文本可能来自各种来源,如文本文件、PDF、DOCX 或网页 (HTML)。* 每个文档都可能具有关联的元数据,包括其来源、所有者、创建日期等*/
public class Document {/*** Common metadata key for the name of the file from which the document was loaded.*/public static final String FILE_NAME = "file_name";/*** Common metadata key for the absolute path of the directory from which the document was loaded.*/public static final String ABSOLUTE_DIRECTORY_PATH = "absolute_directory_path";/*** Common metadata key for the URL from which the document was loaded.*/public static final String URL = "url";private final String text;private final Metadata metadata;
API
  • Document.text() 返回 Document 的文本内容
  • Document.metadata() 返回 Document 的元数据(见下文)
  • Document.toTextSegment()Document 转换为 TextSegment(见下文)
  • Document.from(String, Metadata) 从文本和 Metadata 创建一个 Document
  • Document.from(String) 从文本创建一个带空 MetadataDocument

5.2 元数据(Metadata)

每个 Document 都包含 Metadata,用于存储文档的元信息,如名称、来源、最后更新时间、所有者或任何其他相关细节。

Metadata 以KV对形式存储,其中键是 String 类型,值可为 StringIntegerLongFloatDouble 中的任意一种。

用途
  • 在将文档内容包含到 LLM 的提示词中时,可以将元数据条目一并包含,向 LLM 提供额外信息。例如,提供文档名称和来源可以帮助 LLM 更好地理解内容。
  • 在搜索相关内容以包含在提示词中时,可以根据元数据条目进行过滤。例如,您可以将语义搜索范围限制为属于特定所有者的文档。
  • 当文档的来源被更新(例如文档的特定页面),您可以通过其元数据条目(例如“id”、“source”等)轻松找到相应的文档,并在嵌入存储中更新它,以保持同步。
API
  • Metadata.from(Map)Map 创建 Metadata
  • Metadata.put(String key, String value) / put(String, int) / 等方法添加元数据条目
  • Metadata.getString(String key) / getInteger(String key) / 等方法返回元数据条目的值,并转换为所需类型
  • Metadata.containsKey(String key) 检查元数据中是否包含指定键的条目
  • Metadata.remove(String key) 从元数据中删除指定键的条目
  • Metadata.copy() 返回元数据的副本
  • Metadata.toMap() 将元数据转换为 Map

5.3 文档加载器(Document Loader)

可从 String 创建一个 Document,但更简单的是使用库中包含的文档加载器之一:

  • FileSystemDocumentLoader 来自 langchain4j 模块
  • UrlDocumentLoader 来自 langchain4j 模块
  • AmazonS3DocumentLoader 来自 langchain4j-document-loader-amazon-s3 模块
  • AzureBlobStorageDocumentLoader 来自 langchain4j-document-loader-azure-storage-blob 模块
  • GitHubDocumentLoader 来自 langchain4j-document-loader-github 模块
  • TencentCosDocumentLoader 来自 langchain4j-document-loader-tencent-cos 模块

5.4 文本片段转换器

TextSegmentTransformer 类似于 DocumentTransformer(如上所述),但它用于转换 TextSegment

DocumentTransformer 类似,没有统一的解决方案,建议根据您的数据自定义实现 TextSegmentTransformer

提高检索效果的有效方法是将 Document 的标题或简短摘要包含在每个 TextSegment

5.5 嵌入

Embedding 类封装了一个数值向量,表示嵌入内容(通常是文本,如 TextSegment)的“语义意义”。

关于向量嵌入的内容:

  • https://www.elastic.co/what-is/vector-embedding
  • https://www.pinecone.io/learn/vector-embeddings/
  • https://cloud.google.com/blog/topics/developers-practitioners/meet-ais-multitool-vector-embeddings
API
  • Embedding.dimension() 返回嵌入向量的维度(即长度)
  • CosineSimilarity.between(Embedding, Embedding) 计算两个 Embedding 之间的余弦相似度
  • Embedding.normalize() 对嵌入向量进行归一化(就地操作)

嵌入模型

EmbeddingModel 接口代表一种特殊类型的模型,将文本转换为 Embedding

当前支持的嵌入模型可以在这里找到。

API
  • EmbeddingModel.embed(String) 嵌入给定的文本
  • EmbeddingModel.embed(TextSegment) 嵌入给定的 TextSegment
  • EmbeddingModel.embedAll(List<TextSegment>) 嵌入所有给定的 TextSegment
  • EmbeddingModel.dimension() 返回该模型生成的 Embedding 的维度

嵌入存储

EmbeddingStore 接口表示嵌入存储,也称为向量数据库。它用于存储和高效搜索相似的(在嵌入空间中接近的)Embedding

当前支持的嵌入存储可以在这里找到。

EmbeddingStore 可以单独存储 Embedding,也可以与相应的 TextSegment 一起存储:

  • 它可以仅按 ID 存储 Embedding,嵌入的数据可以存储在其他地方,并通过 ID 关联。
  • 它可以同时存储 Embedding 和被嵌入的原始数据(通常是 TextSegment)。
API
  • EmbeddingStore.add(Embedding) 将给定的 Embedding 添加到存储中并返回随机 ID
  • EmbeddingStore.add(String id, Embedding) 将给定的 Embedding 以指定 ID 添加到存储中
  • EmbeddingStore.add(Embedding, TextSegment) 将给定的 Embedding 和关联的 TextSegment 添加到存储中,并返回随机 ID
  • EmbeddingStore.addAll(List<Embedding>) 将一组 Embedding 添加到存储中,并返回一组随机 ID
  • EmbeddingStore.addAll(List<Embedding>, List<TextSegment>) 将一组 Embedding 和关联的 TextSegment 添加到存储中,并返回一组随机 ID
  • EmbeddingStore.search(EmbeddingSearchRequest) 搜索最相似的 Embedding
  • EmbeddingStore.remove(String id) 按 ID 从存储中删除单个 Embedding
  • EmbeddingStore.removeAll(Collection<String> ids) 按 ID 从存储中删除多个 Embedding
  • EmbeddingStore.removeAll(Filter) 删除存储中与指定 Filter 匹配的所有 Embedding
  • EmbeddingStore.removeAll() 删除存储中的所有 Embedding
嵌入搜索请求(EmbeddingSearchRequest)

EmbeddingSearchRequest 表示在 EmbeddingStore 中的搜索请求。其属性如下:

  • Embedding queryEmbedding: 用作参考的嵌入。
  • int maxResults: 返回的最大结果数。这是一个可选参数,默认为 3。
  • double minScore: 最低分数,范围为 0 到 1(含)。仅返回得分 >= minScore 的嵌入。这是一个可选参数,默认为 0。
  • Filter filter: 搜索时应用于 Metadata 的过滤器。仅返回 Metadata 符合 FilterTextSegment
过滤器(Filter)

关于 Filter 的更多细节可以在这里找到。

嵌入搜索结果(EmbeddingSearchResult)

EmbeddingSearchResult 表示在 EmbeddingStore 中的搜索结果,包含 EmbeddingMatch 列表。

嵌入匹配(Embedding Match)

EmbeddingMatch 表示一个匹配的 Embedding,包括其相关性得分、ID 和嵌入的原始数据(通常是 TextSegment)。

嵌入存储导入器

EmbeddingStoreIngestor 表示一个导入管道,负责将 Document 导入到 EmbeddingStore

在最简单的配置中,EmbeddingStoreIngestor 使用指定的 EmbeddingModel 嵌入提供的 Document,并将它们与其 Embedding 一起存储在指定的 EmbeddingStore 中:

EmbeddingStoreIngestor ingestor = EmbeddingStoreIngestor.builder().embeddingModel(embeddingModel).embeddingStore(embeddingStore).build();ingestor.ingest(document1);
ingestor.ingest(document2, document3);
ingestor.ingest(List.of(document4, document5, document6));

可选地,EmbeddingStoreIngestor 可以使用指定的 DocumentTransformer 来转换 Document。这在您希望在嵌入之前对文档进行清理、增强或格式化时非常有用。

可选地,EmbeddingStoreIngestor 可以使用指定的 DocumentSplitterDocument 拆分为 TextSegment。这在文档较大且您希望将其拆分为较小的 TextSegment 时非常有用,以提高相似度搜索的质量并减少发送给 LLM 的提示词的大小和成本。

可选地,EmbeddingStoreIngestor 可以使用指定的 TextSegmentTransformer 来转换 TextSegment。这在您希望在嵌入之前对 TextSegment 进行清理、增强或格式化时非常有用。

示例:

EmbeddingStoreIngestor ingestor = EmbeddingStoreIngestor.builder()// 为每个 Document 添加 userId 元数据条目,便于后续过滤.documentTransformer(document -> {document.metadata().put("userId", "12345");return document;})// 将每个 Document 拆分为 1000 个 token 的 TextSegment,具有 200 个 token 的重叠.documentSplitter(DocumentSplitters.recursive(1000, 200, new OpenAiTokenizer()))// 为每个 TextSegment 添加 Document 的名称,以提高搜索质量.textSegmentTransformer(textSegment -> TextSegment.from(textSegment.metadata("file_name") + "\n" + textSegment.text(),textSegment.metadata())).embeddingModel(embeddingModel).embeddingStore(embeddingStore).build();

关注我,紧跟本系列专栏文章,咱们下篇再续!

作者简介:魔都架构师,多家大厂后端一线研发经验,在分布式系统设计、数据平台架构和AI应用开发等领域都有丰富实践经验。

各大技术社区头部专家博主。具有丰富的引领团队经验,深厚业务架构和解决方案的积累。

负责:

  • 中央/分销预订系统性能优化

  • 活动&券等营销中台建设

  • 交易平台及数据中台等架构和开发设计

  • 车联网核心平台-物联网连接平台、大数据平台架构设计及优化

  • LLM Agent应用开发

  • 区块链应用开发

  • 大数据开发挖掘经验

  • 推荐系统项目

    目前主攻市级软件项目设计、构建服务全社会的应用系统。

参考:

  • 编程严选网

    本文由博客一文多发平台 OpenWrite 发布!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/148454.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

记录:ubuntu20.04的安装和必要的开发准备

记录ubuntu20.04的安装和必要的开发准备 准备1. 安装ubuntu20.04时的Tips2. 屏幕亮度调节问题3. 解决 "No Wi-Fi Adapter Found"4. Nvidia Driver && cuda5. 修改安装源6. ssh 远程开发 准备 没有装双系统&#xff0c;只有 ubuntu20.04&#xff0c;记录安装之…

微服务--Gateway网关

在微服务架构中&#xff0c;Gateway&#xff08;网关&#xff09;是一个至关重要的组件&#xff0c;它扮演着多种关键角色&#xff0c;包括路由、负载均衡、安全控制、监控和日志记录等。 Gateway网关的作用 统一访问入口&#xff1a; Gateway作为微服务的统一入口&#xff0c…

HTTP协议1.1请求头和keep-alive

请求头分类 End-to-end&#xff08;端对端&#xff09; 必须全部带给目标服务器&#xff0c;不会被中途变化或去掉 Hop-by-hop&#xff08;逐跳头&#xff09; 比如客户端发请求&#xff0c;要路过代理(例如Nginx)&#xff0c;头可以被自动删掉&#xff0c;来到真正服务器上…

IAR创建工程与工程配置

第一步&#xff1a;先创建一个新的工作区间 第二步&#xff1a;创建一个新的工程&#xff08;工程名与文件夹名字要一致&#xff09; 第三步&#xff1a;添加组 第四步&#xff1a;往各个组里添加文件 第五步&#xff1a;配置工程 因为我的程序下载是通过ST-link的SWD&#xf…

正向科技|格雷母线定位系统的设备接线安装示范

格雷母线安装规范又来了&#xff0c;这次是设备接线步骤 格雷母线是格雷母线定位系统的核心部件&#xff0c;沿着移动机车轨道方向上铺设&#xff0c;格雷母线以相互靠近的扁平状电缆与天线箱电磁偶合来进行信号传递&#xff0c;从而检测得到天线箱在格雷母线长度方向上的位置。…

C++ | Leetcode C++题解之第432题全O(1)的数据结构

题目&#xff1a; 题解&#xff1a; class AllOne {list<pair<unordered_set<string>, int>> lst;unordered_map<string, list<pair<unordered_set<string>, int>>::iterator> nodes;public:AllOne() {}void inc(string key) {if (…

安卓13删除下拉栏中的设置按钮 android13删除设置按钮

总纲 android13 rom 开发总纲说明 文章目录 1.前言2.问题分析3.代码分析4.代码修改5.编译6.彩蛋1.前言 顶部导航栏下拉可以看到,底部这里有个设置按钮,点击可以进入设备的设置页面,这里我们将更改为删除,不同用户通过这个地方进入设置。也就是下面这个按钮。 2.问题分析…

[Unity Demo]从零开始制作空洞骑士Hollow Knight第九集:制作小骑士基本的攻击行为Attack以及为敌人制作生命系统和受伤系统

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、制作小骑士基本的攻击行为Attack 1.制作动画以及使用UNITY编辑器编辑2.使用代码实现扩展新的落地行为和重落地行为3.使用状态机实现击中敌人造成伤害机制二…

前端vue-3种生命周期,只能在各自的领域使用

上面的表格可以简化为下面的两句话&#xff1a; setup是语法糖&#xff0c;下面的两个import导入是vue3和vue2的区别&#xff0c;现在的vue3直接导入&#xff0c;比之前vue2简单 还可以是导入两个生命周期函数

kafka负载均衡迁移(通过kafka eagle)

在grafana监控中发现kafka的各个节点磁盘不均匀 出现这样的情况是因为kafka默认是以文件数作为平衡的条件的。换句话说&#xff0c;kafka不会管一个副本有多大&#xff0c;只会看磁盘中有多少个副本文件。 解决方式&#xff1a; 1、修改策略&#xff0c;改为按照磁盘大小平衡…

闯关leetcode——69. Sqrt(x)

大纲 题目地址内容 解题代码地址 题目 地址 https://leetcode.com/problems/sqrtx/description/ 内容 Given a non-negative integer x, return the square root of x rounded down to the nearest integer. The returned integer should be non-negative as well. You mu…

《动手学深度学习》笔记1.10——激活函数←模型初始化←数值稳定性

目录 1. 数值稳定性 1.1 神经网络的梯度 1.2 数值稳定性的常见两个问题 1.3 梯度爆炸 1.3.1 MLP的例子 1.3.2 使用ReLU激活函数 1.3.3 产生的问题 1.4 梯度消失 1.4.1 使用sigmoid激活函数 1.4.2 梯度消失的问题 1.5 总结 2. 让训练更稳定 2.1 目标 (ResNet, LSTM…

深入探究PR:那些被忽视却超实用的视频剪辑工具

如果想要了解视频剪辑的工具&#xff0c;那一定听说过pr视频剪辑吧。如果你是新手其实我更推荐你从简单的视频剪辑工具入手&#xff0c;这次我就介绍一些简单好操作的视频剪辑工具来入门吧。 1.福晰视频剪辑 连接直达>>https://www.pdf365.cn/foxit-clip/ 这款工具操…

论文阅读 | 一种基于潜在向量优化的可证明安全的图像隐写方法(TMM 2023)

TMM 2023 中国科学技术大学 针对现有的可证明安全的图像隐写不能抵抗有损图像操作&#xff0c;而现有的生成图像隐写不能证明安全问题&#xff0c;提出一种基于潜在向量优化的可证明安全的图像隐写方法&#xff08;名为PARIS&#xff09;&#xff0c;该方法受到逆采样器和噪声…

Unity 热更新(HybridCLR+Addressable)-创建Addressable资源

三、创建Addressable资源 创建三个文件夹&#xff0c;放Addressable资源&#xff0c;里面对应放程序集&#xff0c;预制体以及场景 拖拽到Addressable Groups对应组中 其中文件名太长&#xff0c;带着路径&#xff0c;可以简化名字 创建一个脚本&#xff0c;对于这个脚本进行一…

C#常用数据结构栈的介绍

定义 在C#中&#xff0c;Stack<T> 是一个后进先出&#xff08;LIFO&#xff0c;Last-In-First-Out&#xff09;集合类&#xff0c;位于System.Collections.Generic 命名空间中。Stack<T> 允许你将元素压入栈顶&#xff0c;并从栈顶弹出元素。 不难看出&#xff0c;…

量子计算Quantum Computing

引子&#xff1a;朋友闲谈&#xff0c;问及工作&#xff0c;一个朋友说&#xff0c;他在一家做量子通信的公司上班&#xff0c;具体岗位是做结构设计&#xff0c;他抱怨说&#xff0c;直到现在他都搞不懂量子计算是什么&#xff1f; 一、量子计算是什么&#xff1f; 什么是量子…

LCD屏JD9853各个接口最大支持速率

概述 电子产品开发时常会遇到有带LCD屏的产品&#xff0c;是怎么计算出来的呢&#xff1f;接下来以JD9853这颗驱动IC举例说明&#xff0c;改驱动IC分别支持&#xff1a;8080、(3-line SPI&#xff09;、 (4-line SPI)、QSPI、RGB 1、8080 通过“时钟周期为传输速率的倒数”&a…

k8s上安装prometheus

一、下载对应的kube-prometheus源码 github地址&#xff1a;GitHub - prometheus-operator/kube-prometheus: Use Prometheus to monitor Kubernetes and applications running on Kubernetes 1&#xff09;进入目录 [rootk8s-master ~]# cd kube-prometheus [rootk8s-master…

Spring Boot 学习之路 -- 配置项目

前言 最近因为业务需要&#xff0c;被拉去研究后端的项目&#xff0c;代码基于 Spring Boot&#xff0c;对我来说完全小白&#xff0c;需要重新学习研究…出于个人习惯&#xff0c;会以 Blog 文章的方式做一些记录&#xff0c;文章内容基本来源于「 Spring Boot 从入门到精通&…