AVL树与红黑树

目录

AVL树

AVL树节点的定义

AVL树的插入

AVL树的旋转

右单旋

左单旋

左右双旋

右左双旋

AVL树的验证

AVL树的性能

红黑树

红黑树的性质

红黑树节点的定义

红黑树结构

红黑树的插入操作

按照二叉搜索的树规则插入新节点

检测新节点插入后,红黑树的性质是否造到破坏

情况一

情况二

情况三

红黑树的验证

红黑树与AVL树的比较

红黑树的应用


AVL树

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查 找元素相当于在顺序表中搜索元素,效率低下。

但是存在这样一种方法:

当向二叉搜索树中插入新结点后,如果能保证每个结点的左右 子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均 搜索长度。

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

1.它的左右子树都是AVL树

2.左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

AVL树节点的定义

template<class T>
struct AVLTreeNode
{AVLTreeNode(const T& data): _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr), _data(data), _bf(0){}AVLTreeNode<T>* _pLeft;   // 该节点的左孩子AVLTreeNode<T>* _pRight;  // 该节点的右孩子AVLTreeNode<T>* _pParent; // 该节点的双亲T _data;int _bf;                  // 该节点的平衡因子
};

AVL树的插入

VL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么 AVL树的插入过程可以分为两步:

1.按照二叉搜索树的方式插入新节点

2. 调整节点的平衡因子

AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构, 使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种

1.新节点插入较高左子树的左侧---左左

右单旋

void _RotateR(PNode pParent)
{// pSubL: pParent的左孩子// pSubLR: pParent左孩子的右孩子,注意:该PNode pSubL = pParent->_pLeft;PNode pSubLR = pSubL->_pRight;// 旋转完成之后,30的右孩子作为双亲的左孩子pParent->_pLeft = pSubLR;// 如果30的左孩子的右孩子存在,更新亲双亲if(pSubLR)pSubLR->_pParent = pParent;// 60 作为 30的右孩子
pSubL->_pRight = pParent;// 因为60可能是棵子树,因此在更新其双亲前必须先保存60的双亲PNode pPParent = pParent->_pParent;// 更新60的双亲pParent->_pParent = pSubL;// 更新30的双亲pSubL->_pParent = pPParent;// 如果60是根节点,根新指向根节点的指针if(NULL == pPParent){_pRoot = pSubL;pSubL->_pParent = NULL;}else{// 如果60是子树,可能是其双亲的左子树,也可能是右子树if(pPParent->_pLeft == pParent)pPParent->_pLeft = pSubL;elsepPParent->_pRight = pSubL;}// 根据调整后的结构更新部分节点的平衡因子pParent->_bf = pSubL->_bf = 0;
}

2. 新节点插入较高右子树的右侧---右右

左单旋

实现及情况考虑可参考右单旋

3. 新节点插入较高左子树的右侧---左右:先左单旋再右单旋

左右双旋

将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再 考虑平衡因子的更新。

// 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进
行调整
void _RotateLR(PNode pParent)
{PNode pSubL = pParent->_pLeft;PNode pSubLR = pSubL->_pRight;// 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节
点的平衡因子int bf = pSubLR->_bf;// 先对30进行左单旋_RotateL(pParent->_pLeft);// 再对90进行右单旋_RotateR(pParent);if(1 == bf)pSubL->_bf = -1;else if(-1 == bf)pParent->_bf = 1;
}

4. 新节点插入较高右子树的左侧---右左:先右单旋再左单旋

右左双旋

参考右左双旋

总结:

假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑

1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR 当pSubR的平衡因子为1时,执行左单旋 当pSubR的平衡因子为-1时,执行右左双旋

2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL 当pSubL的平衡因子为-1是,执行右单旋 当pSubL的平衡因子为1时,执行左右双旋

旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。

AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步

1. 验证其为二叉搜索树

如果中序遍历可得到一个有序的序列,就说明为二叉搜索树

2. 验证其为平衡树

每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)

节点的平衡因子是否计算正确

int _Height(PNode pRoot);
bool _IsBalanceTree(PNode pRoot)
{// 空树也是AVL树if (nullptr == pRoot) return true;// 计算pRoot节点的平衡因子:即pRoot左右子树的高度差int leftHeight = _Height(pRoot->_pLeft);int rightHeight = _Height(pRoot->_pRight);int diff = rightHeight - leftHeight;
// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者// pRoot平衡因子的绝对值超过1,则一定不是AVL树if (diff != pRoot->_bf || (diff > 1 || diff < -1))return false;// pRoot的左和右如果都是AVL树,则该树一定是AVL树return _IsBalanceTree(pRoot->_pLeft) && _IsBalanceTree(pRoot-
>_pRight);}

AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这 样可以保证查询时高效的时间复杂度,即$log_2 (N)$。但是如果要对AVL树做一些结构修改的操 作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时, 有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数 据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

红黑树

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或 Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路 径会比其他路径长出俩倍,因而是接近平衡的。

红黑树的性质

1. 每个结点不是红色就是黑色

2. 根节点是黑色的 

3. 如果一个节点是红色的,则它的两个孩子结点是黑色的 

4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点 

5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)

红黑树节点的定义

// 节点的颜色
enum Color{RED, BLACK};
// 红黑树节点的定义
template<class ValueType>
struct RBTreeNode
{RBTreeNode(const ValueType& data = ValueType(),Color color = RED): _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr), _data(data), _color(color){}RBTreeNode<ValueType>* _pLeft;   // 节点的左孩子RBTreeNode<ValueType>* _pRight;  // 节点的右孩子RBTreeNode<ValueType>* _pParent; // 节点的双亲(红黑树需要旋转,为了实现简单给
出该字段)ValueType _data;            // 节点的值域Color _color;               // 节点的颜色
};

红黑树结构

为了后续实现关联式容器简单,红黑树的实现中增加一个头结点,因为跟节点必须为黑色,为了 与根节点进行区分,将头结点给成黑色,并且让头结点的 pParent 域指向红黑树的根节点,pLeft 域指向红黑树中最小的节点,_pRight域指向红黑树中最大的节点,如下

红黑树的插入操作

红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步

按照二叉搜索的树规则插入新节点

template<class ValueType>
class RBTree
{//……bool Insert(const ValueType& data){PNode& pRoot = GetRoot();if (nullptr == pRoot){pRoot = new Node(data, BLACK);// 根的双亲为头节点pRoot->_pParent = _pHead;_pHead->_pParent = pRoot;}else{// 1. 按照二叉搜索的树方式插入新节点// 2. 检测新节点插入后,红黑树的性质是否造到破坏,//   若满足直接退出,否则对红黑树进行旋转着色处理}// 根节点的颜色可能被修改,将其改回黑色pRoot->_color = BLACK;_pHead->_pLeft = LeftMost();_pHead->_pRight = RightMost();return true;}
private:PNode& GetRoot(){ return _pHead->_pParent;}// 获取红黑树中最小节点,即最左侧节点PNode LeftMost();// 获取红黑树中最大节点,即最右侧节点PNode RightMost();
private:PNode _pHead;
};

检测新节点插入后,红黑树的性质是否造到破坏

因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何 性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连 在一起的红色节点,此时需要对红黑树分情况来讨论

情况一

 cur为红,p为红,g为黑,u存在且为红

解决方式:将p,u改为黑,g改为红,然后把g当成cur,继续向上调整

情况二

cur为红,p为红,g为黑,u不存在/u存在且为黑

p为g的左孩子,cur为p的左孩子,则进行右单旋转;

相反, p为g的右孩子,cur为p的右孩子,则进行左单旋转

p、g变色--p变黑,g变红

情况三

cur为红,p为红,g为黑,u不存在/u存在且为黑

p为g的左孩子,cur为p的右孩子,则针对p做左单旋转;

相反, p为g的右孩子,cur为p的左孩子,则针对p做右单旋转 则转换成了情况2

红黑树的验证

红黑树的检测分为两步

1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)

2. 检测其是否满足红黑树的性质

bool IsValidRBTree()
{PNode pRoot = GetRoot();// 空树也是红黑树if (nullptr == pRoot)return true;// 检测根节点是否满足情况if (BLACK != pRoot->_color){cout << "违反红黑树性质二:根节点必须为黑色" << endl;return false;}// 获取任意一条路径中黑色节点的个数size_t blackCount = 0;
PNode pCur = pRoot;while (pCur){if (BLACK == pCur->_color)blackCount++;pCur = pCur->_pLeft;}// 检测是否满足红黑树的性质,k用来记录路径中黑色节点的个数size_t k = 0;return _IsValidRBTree(pRoot, k, blackCount);}
bool _IsValidRBTree(PNode pRoot, size_t k, const size_t blackCount)
{//走到null之后,判断k和black是否相等if (nullptr == pRoot){if (k != blackCount){cout << "违反性质四:每条路径中黑色节点的个数必须相同" << endl;return false;}return true;}// 统计黑色节点的个数if (BLACK == pRoot->_color)k++;// 检测当前节点与其双亲是否都为红色PNode pParent = pRoot->_pParent;if (pParent && RED == pParent->_color && RED == pRoot->_color){cout << "违反性质三:没有连在一起的红色节点" << endl;return false;}return _IsValidRBTree(pRoot->_pLeft, k, blackCount) && _IsValidRBTree(pRoot->_pRight, k, blackCount);}

红黑树与AVL树的比较

红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O($log_2 N$),红黑树不追 求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数, 所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红 黑树更多。

红黑树的应用

1. C++ STL库 -- map/set、mutil_map/mutil_set

2. Java 库

3. linux内核

4. 其他一些库

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/147004.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

升级你的HarmonyOS体验:一窥功能引导与拖拽交换的独家技巧

文章目录 前言项目目录结构开发流程主要步骤讲解关键配置Index.ets 页面讲解高光组件相关HeaderApp 总结 前言 在当今的移动应用开发领域&#xff0c;为了提供更加友好和直观的用户体验&#xff0c;开发者们通常会集成多种交互功能来增强应用的互动性和易用性。在这些功能中&a…

【机器学习】12-决策树1——概念、特征选择

机器学习10-决策树1 学习样本的特征&#xff0c;将样本划分到不同的类别&#xff08;分类问题&#xff09;或预测连续的数值&#xff08;回归问题&#xff09;。 选择特征&#xff0c;划分数据集&#xff0c;划分完成形成模型&#xff08;树结构&#xff09;&#xff0c;一个…

JavaSE——多线程基础

概述 现代操作系统&#xff08;Windows&#xff0c;macOS&#xff0c;Linux&#xff09;都可以执行多任务。多任务就是同时允许多个任务。例如&#xff1a;播放音乐的同时&#xff0c;浏览器可以进行文件下载&#xff0c;同时可以进行QQ消息的收发。 CPU执行代码都是一条一条顺…

Matlab R2018a怎么下载安装?Matlab R2018a保姆级详细安装教程

Matlab R2018a下载方法&#xff1a; Matlab R2018a安装教程&#xff1a; 1、右击下载好的压缩包&#xff0c;选择解压到Matlab R2018a 2、打开文件夹【R2018a_win64】&#xff0c;右击下面的setup.exe&#xff0c;选择【以管理员身份运行】 3、点击选择【使用文件安装密钥】&a…

IDEA连接数据库报错:Access denied for user ****

使用IDEA开发时&#xff0c;通过Databse连接数据库。多次连接报错&#xff1a;Access denied for user **** 如下所示&#xff1a; ​ ‍ ‍ ​ ‍ 花了不少时间排查&#xff0c;确认账号、密码&#xff0c;后面发现账号后多了个空格&#xff0c;而且不容易发现&#xf…

proteus仿真软件简体中文版网盘资源下载(附教程)

对于电子通信专业的小伙伴来说&#xff0c;今天文章的标题应该不会陌生。Proteus是一款具有广泛应用的仿真软件&#xff0c;它的功能非常强大&#xff0c;适用于所有单片机的仿真工作&#xff0c;能够从原理图、调试、到与电路的协同仿真一条龙全部搞定&#xff0c;受到所有用户…

交叉熵损失函数的使用

交叉熵损失函数 交叉熵损失函数&#xff08;Cross-Entropy Loss&#xff09;&#xff0c;也称为对数损失&#xff08;Log Loss&#xff09;&#xff0c;是机器学习和深度学习中常用的损失函数之一&#xff0c;尤其在分类问题中。它衡量的是模型预测的概率分布与真实标签的概率…

使用Properties

a.特点 i.它的Key-Value一般都是String-String类型的&#xff0c;可以用Map<String, String>表示。 ii.Java标准库提供Properties来表示一组“配置”。 iii.读写Properties时&#xff0c;使用getProperty()和setProperty()方法&#xff0c;不要调用继承自HashTabled的ge…

开始场景的制作+气泡特效的添加

3D场景或2D场景的切换 1.新建项目时选择3D项目或2D项目 2.如下图操作&#xff1a; 开始前的固有流程 按照如下步骤进行操作&#xff0c;于步骤3中更改Company Name等属性&#xff1a; 本案例分辨率可以如下设置&#xff0c;有能力者可根据需要自行调整&#xff1a; 场景制作…

轻掺杂漏极(LDD)技术

轻掺杂漏极&#xff08;LDD&#xff09;是一种低能量、低电流的注入工艺&#xff0c;通过该工艺在栅极附近形成浅结&#xff0c;以减少靠近漏极处的垂直电场。对于亚微米MOSFET来说&#xff0c;LDD是必需的&#xff0c;以便抑制热电子效应&#xff0c;这种效应会导致器件退化并…

Python进阶学习笔记(一)对象

1.对象模型 在面向对象理论中类和对象是不同的概念&#xff0c;而在python中类也是对象&#xff0c;叫做类型对象。 所以python中的类&#xff0c;实例对象&#xff0c;类型都是对象。 元类型&#xff1a; 在python中实例对象的类型为对应类型的对象&#xff0c;而类型的对象…

14. PEFT:在大模型中快速应用 LoRA

如果你对LoRA还没有一个直观的概念&#xff0c;可以回看这篇文章&#xff1a;《3. 认识 LoRA&#xff1a;从线性层到注意力机制》。 我们将在这里进一步探讨如何快速地在大型预训练模型中应用 LoRA&#xff0c;并解答可能存在的问题&#xff0c;包括&#xff1a; peft 和 lora …

博途TIA v18下载时,需要重启才能安装下载路径是灰色改不了

一、需要重启才能安装 删除下面注册表P开头的文件&#xff1a; 二、下载路径是灰色改不了 注册表HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion里找到C:\Program Files或者C:\Program Files&#xff08;x86&#xff09;&#xff0c;具体哪个看安装的时候对应…

TikTokDownloader 开源项目操作教程

TikTokDownloader TikTokDownloader 是一个开源的多功能视频下载工具&#xff0c;它专门用于从抖音和TikTok平台下载无水印的视频、图集和直播内容。这个工具支持批量下载账号作品、收藏内容&#xff0c;并可以采集详细数据。它提供了命令行和Web界面&#xff0c;具有多线程下…

arm-硬件

一、ARM体系与架构 ARM芯片组成 -- arm 体系中&#xff0c;一般讲到的芯片由两大部分组成&#xff1a;arm的内核、外设 arm内核&#xff1a; -- 其内核主要由&#xff1a;寄存器、指令集、总线、存储器映射规则、中断逻辑主调试组件构成。ARM公司只设计内核&#xff0c;授权给…

java intellij idea开发步骤,使用指南,工程创建与背景色字体配置,快捷键

intellij idea2021 配置背景色&#xff0c;字体大小&#xff0c;主题 快捷键

网站建设模板选择哪种

在选择网站建设模板时&#xff0c;需要考虑多个因素&#xff0c;包括网站的目的、受众、内容类型以及个性化需求等。以下是一些常见的网站建设模板类型&#xff0c;以及它们的特点&#xff0c;希望对你的选择有所帮助。 企业/商务模板&#xff1a; 企业和商务网站通常需要专业、…

14、主机、应用及数据安全解读

数据来源&#xff1a;14.主机、应用及数据安全解读_哔哩哔哩_bilibili

leetcode第十一题:盛最多水的容器

给定一个长度为 n 的整数数组 height 。有 n 条垂线&#xff0c;第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线&#xff0c;使得它们与 x 轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大水量。 说明&#xff1a;你不能倾斜容器。 示例…

简单题101. 对称二叉树 (python)20240922

问题描述&#xff1a; python: # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, val0, leftNone, rightNone): # self.val val # self.left left # self.right rightclass Solution(object):def isSymm…