Java之线程篇六

目录

CAS 

CAS伪代码

CAS的应用

实现原子类 

实现自旋锁

CAS的ABA问题

ABA问题导致BUG的例子 

相关面试题

synchronized原理

synchronized特性 

加锁过程

相关面试题

Callable

相关面试题

JUC的常见类

ReentrantLock

ReentrantLock 和 synchronized 的区别:

原子类

信号量

相关面试题


CAS 

CAS: 全称Compare and swap,字面意思:”比较并交换“,一个 CAS 涉及到以下操作:

我们假设内存中的原数据V,旧的预期值A,需要修改的新值B。
1. 比较 A 与 V 是否相等。(比较)
2. 如果比较相等,将 B 写入 V。(交换)
3. 返回操作是否成功。

CAS伪代码
下面写的代码不是原子的 , 真实的 CAS 是一个原子的硬件指令完成的 . 这个伪代码只是辅助理解
CAS 的工作流程。
boolean CAS(address, expectValue, swapValue) {if (&address == expectedValue) {&address = swapValue;return true;}return false;
}

CAS其实是一个cpu指令,单个的cpu指令,是原子的!!!

就可以使用CAS完成一些操作,进一步代替“加锁”;

基于CAS实现线程安全的方式也称为“无锁化编程”。

优点:保证线程安全,同时避免阻塞,影响效率;

缺点:代码会变复杂,不好理解;只能够适用特定场景,不如加锁方式更普遍。

CAS的应用
实现原子类 

标准库中提供了 java.util.concurrent.atomic 包, 里面的类都是基于这种方式来实现的. 
典型的就是 AtomicInteger 类. 其中的 getAndIncrement 相当于 i++ 操作.

伪代码实现

class AtomicInteger {private int value;public int getAndIncrement() {int oldValue = value;while ( CAS(value, oldValue, oldValue+1) != true) {oldValue = value;}return oldValue;}
}
实现自旋锁

伪代码实现

public class SpinLock {private Thread owner = null;public void lock(){// 通过 CAS 看当前锁是否被某个线程持有. // 如果这个锁已经被别的线程持有, 那么就自旋等待. // 如果这个锁没有被别的线程持有, 那么就把 owner 设为当前尝试加锁的线程. while(!CAS(this.owner, null, Thread.currentThread())){}}public void unlock (){this.owner = null;}
}
CAS的ABA问题

ABA问题即:

假设有两个线程t1和t2,有一个共享变量num,初值为A,接下来t1想使用CAS把num改为Z,那么就需要先读取num的值,记录到oldNum变量中,然后使用CAS判断当前num的值是否为A,如果为A,则改为Z。

但是在t1执行上述操作之前,t2线程可能把num的值从A改为B,又从B改为A。

那么此时,线程t1无法区分当前这个变量始终是A,还是经历了一个变化过程。

ABA问题导致BUG的例子 

假设你要去ATM取款机取钱,余额有1000,要取款500,但是取款的时候ATM机卡了一下,所以你按了两下,假设ATM取款机按CAS方式工作,虽然你按了两次,但是你取出的是500,不过,如果恰巧这个时候有人给你转了500,这个时候,你按的第2下取款,使用CAS方式会发现余额还是1000,那么此时就会余额没有改变,你最后会取出1000.

解决方法:引入版本号等方式

给要修改的值, 引入版本号. 在 CAS 比较数据当前值和旧值的同时, 也要比较版本号是否符合预期. 
CAS 操作在读取旧值的同时, 也要读取版本号. 
真正修改的时候, 
如果当前版本号和读到的版本号相同, 则修改数据, 并把版本号 + 1.
如果当前版本号高于读到的版本号. 就操作失败(认为数据已经被修改过了).

相关面试题
1) 讲解下你自己理解的 CAS 机制
全称 Compare and swap, 即 "比较并交换". 相当于通过一个原子的操作, 同时完成 "读取内存, 比较是否相等, 修改内存" 这三个步骤. 本质上需要 CPU 指令的支撑

2) ABA问题怎么解决?

给要修改的数据引入版本号. 在 CAS 比较数据当前值和旧值的同时, 也要比较版本号是否符合预期. 
如果发现当前版本号和之前读到的版本号一致, 就真正执行修改操作, 并让版本号自增; 如果发现当前版本号比之前读到的版本号大, 就认为操作失败.

synchronized原理
synchronized特性 

1. 开始时是乐观锁, 如果锁冲突频繁, 就转换为悲观锁.
2. 开始是轻量级锁实现, 如果锁被持有的时间较长, 就转换成重量级锁. 
3. 实现轻量级锁的时候大概率用到的自旋锁策略
4. 是一种不公平锁
5. 是一种可重入锁
6. 不是读写锁

加锁过程

JVM 将 synchronized 锁分为 无锁、偏向锁、轻量级锁、重量级锁 状态。会根据情况,进行依次升级。 

1)偏向锁

第一个尝试加锁的线程, 优先进入偏向锁状态. 
偏向锁不是真的 "加锁", 只是给对象头中做一个 "偏向锁的标记", 记录这个锁属于哪个线程. 
如果后续没有其他线程来竞争该锁, 那么就不用进行其他同步操作了(避免了加锁解锁的开销)
如果后续有其他线程来竞争该锁(刚才已经在锁对象中记录了当前锁属于哪个线程了, 很容易识别当前申请锁的线程是不是之前记录的线程), 那就取消原来的偏向锁状态, 进入一般的轻量级锁状态. 
偏向锁本质上相当于 "延迟加锁" . 能不加锁就不加锁, 尽量来避免不必要的加锁开销. 
但是该做的标记还是得做的, 否则无法区分何时需要真正加锁.

2)轻量级锁

随着其他线程进入竞争, 偏向锁状态被消除, 进入轻量级锁状态(自适应的自旋锁). 
此处的轻量级锁就是通过 CAS 来实现.

通过 CAS 检查并更新一块内存 (比如 null => 该线程引用)
如果更新成功, 则认为加锁成功
如果更新失败, 则认为锁被占用, 继续自旋式的等待(并不放弃 CPU). 

3)重量级锁

如果竞争进一步激烈, 自旋不能快速获取到锁状态, 就会膨胀为重量级锁
此处的重量级锁就是指用到内核提供的 mutex . 
执行加锁操作, 先进入内核态. 
在内核态判定当前锁是否已经被占用
如果该锁没有占用, 则加锁成功, 并切换回用户态. 
如果该锁被占用, 则加锁失败. 此时线程进入锁的等待队列, 挂起. 等待被操作系统唤醒. 
经历了一系列的沧海桑田, 这个锁被其他线程释放了, 操作系统也想起了这个挂起的线程, 于是唤醒这个线程, 尝试重新获取锁. 

锁消除

编译器+JVM 判断锁是否可消除. 如果可以, 就直接消除。

例如:单线程环境下。 

锁粗化

一段逻辑中如果出现多次加锁解锁, 编译器 + JVM 会自动进行锁的粗化.  

相关面试题

1)什么是偏向锁?

偏向锁不是真的加锁 , 而只是在锁的对象头中记录一个标记 ( 记录该锁所属的线程 ). 如果没有其他线程参与竞争锁, 那么就不会真正执行加锁操作 , 从而降低程序开销 . 一旦真的涉及到其他的线程竞争, 再取消偏向锁状态 , 进入轻量级锁状态 .
Callable

Callable 和 Runnable 相对, 都是描述一个 "任务". Callable 描述的是带有返回值的任务, 
Runnable 描述的是不带返回值的任务. 
Callable 通常需要搭配 FutureTask 来使用. FutureTask 用来保存 Callable 的返回结果. 因为
Callable 往往是在另一个线程中执行的, 啥时候执行完并不确定. 
FutureTask 就可以负责这个等待结果出来的工作 

理解FutureTask

想象去吃麻辣烫 . 当餐点好后 , 后厨就开始做了 . 同时前台会给你一张 " 小票 " . 这个小票就是
FutureTask. 后面我们可以随时凭这张小票去查看自己的这份麻辣烫做出来了没 .
代码示例
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.FutureTask;public class Demo30 {public static void main(String[] args) throws ExecutionException, InterruptedException {// 定义了任务.Callable<Integer> callable = new Callable<Integer>() {@Overridepublic Integer call() throws Exception {int sum = 0;for (int i = 0; i <= 1000; i++) {sum += i;}return sum;}};// 把任务放到线程中进行执行.FutureTask<Integer> futureTask = new FutureTask<>(callable);Thread t = new Thread(futureTask);t.start();// 此处的 get 就能获取到 callable 里面的返回结果.// 由于线程是并发执行的. 执行到主线程的 get 的时候, t 线程可能还没执行完.// 没执行完的话, get 就会阻塞.System.out.println(futureTask.get());}
}
相关面试题

介绍一下Callable是什么

Callable 是一个 interface . 相当于把线程封装了一个 "返回值". 方便程序猿借助多线程的方式计算结果. 
Callable 和 Runnable 相对, 都是描述一个 "任务". Callable 描述的是带有返回值的任务, 
Runnable 描述的是不带返回值的任务.
Callable 通常需要搭配 FutureTask 来使用. FutureTask 用来保存 Callable 的返回结果. 因为
Callable 往往是在另一个线程中执行的, 啥时候执行完并不确定. 
FutureTask 就可以负责这个等待结果出来的工作.

JUC的常见类

JUC,是java.util.concurrent的缩写。

ReentrantLock

可重入互斥锁. 和 synchronized 定位类似, 都是用来实现互斥效果, 保证线程安全. 
ReentrantLock 也是可重入锁. "Reentrant" 这个单词的原意就是 "可重入".

ReentrantLock的用法

lock(): 加锁, 如果获取不到锁就死等. 
trylock(超时时间): 加锁, 如果获取不到锁, 等待一定的时间之后就放弃加锁. 
unlock(): 解锁

ReentrantLock 和 synchronized 的区别:

synchronized 是一个关键字, 是 JVM 内部实现的(大概率是基于 C++ 实现). ReentrantLock 是标准库的一个类, 在 JVM 外实现的(基于 Java 实现). 
synchronized 使用时不需要手动释放锁. ReentrantLock 使用时需要手动释放. 使用起来更灵活, 但是也容易遗漏 unlock. 
synchronized 在申请锁失败时, 会死等. ReentrantLock 可以通过 trylock 的方式等待一段时间就放弃. 
synchronized 是非公平锁, ReentrantLock 默认是非公平锁. 可以通过构造方法传入一个 true 开启公平锁模式. 

更强大的唤醒机制. synchronized 是通过 Object 的 wait / notify 实现等待-唤醒. 每次唤醒的是一个随机等待的线程. ReentrantLock 搭配 Condition 类实现等待-唤醒, 可以更精确控制唤醒某个指定的线程.

// ReentrantLock 的构造方法
public ReentrantLock(boolean fair) {sync = fair ? new FairSync() : new NonfairSync();
}

 如何选择使用哪个锁?

锁竞争不激烈的时候, 使用 synchronized, 效率更高, 自动释放更方便. 
锁竞争激烈的时候, 使用 ReentrantLock, 搭配 trylock 更灵活控制加锁的行为, 而不是死等. 
如果需要使用公平锁, 使用 ReentrantLock.

原子类

原子类内部用的是 CAS 实现,所以性能要比加锁实现 i++ 高很多。原子类有以下几个
AtomicBoolean
AtomicInteger
AtomicIntegerArray
AtomicLong
AtomicReference
AtomicStampedReference 

ExecutorService和Executors

ExecutorService 表示一个线程池实例. 
Executors 是一个工厂类, 能够创建出几种不同风格的线程池. 
ExecutorService 的 submit 方法能够向线程池中提交若干个任务. 

代码示例

ExecutorService pool = Executors.newFixedThreadPool(10);
pool.submit(new Runnable() {@Overridepublic void run() {System.out.println("hello");}
});

Executors 创建线程池的几种方式:

newFixedThreadPool: 创建固定线程数的线程池
newCachedThreadPool: 创建线程数目动态增长的线程池.
newSingleThreadExecutor: 创建只包含单个线程的线程池. 
newScheduledThreadPool: 设定 延迟时间后执行命令,或者定期执行命令. 是进阶版的 Timer. 

Executors 本质上是 ThreadPoolExecutor 类的封装. 

信号量

信号量(Semaphore), 用来表示 "可用资源的个数". 本质上就是一个计数器.
Semaphore 的 PV 操作中的加减计数器操作都是原子的, 可以在多线程环境下直接使用. 

acquire 方法表示申请资源 (P 操作 ), release 方法表示释放资源 (V 操作 )

 代码示例

import java.util.concurrent.Semaphore;public class Demo24 {public static void main(String[] args) throws InterruptedException {Semaphore semaphore = new Semaphore(4);semaphore.acquire();System.out.println("P 操作");semaphore.acquire();System.out.println("P 操作");semaphore.acquire();System.out.println("P 操作");semaphore.acquire();System.out.println("P 操作");semaphore.acquire();System.out.println("P 操作");}
}

运行结果

相关面试题

1) 线程同步的方式有哪些?

synchronized, ReentrantLock, Semaphore 等都可以用于线程同步.

2) 为什么有了 synchronized 还需要 juc 下的 lock?

以 juc 的 ReentrantLock 为例, 
synchronized 使用时不需要手动释放锁. ReentrantLock 使用时需要手动释放. 使用起来更
灵活,
synchronized 在申请锁失败时, 会死等. ReentrantLock 可以通过 trylock 的方式等待一段时
间就放弃. 
synchronized 是非公平锁, ReentrantLock 默认是非公平锁. 可以通过构造方法传入一个
true 开启公平锁模式. 
synchronized 是通过 Object 的 wait / notify 实现等待-唤醒. 每次唤醒的是一个随机等待的
线程. ReentrantLock 搭配 Condition 类实现等待-唤醒, 可以更精确控制唤醒某个指定的线
程. 

3) AtomicInteger 的实现原理是什么?

基于 CAS 机制. 伪代码如下:  

class AtomicInteger {private int value;public int getAndIncrement() {int oldValue = value;while ( CAS(value, oldValue, oldValue+1) != true) {oldValue = value;}return oldValue;}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/148480.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

《大学操作系统课程:开启计算机世界的关键之门》

在大学的计算机科学与技术专业中&#xff0c;操作系统课程犹如一把钥匙&#xff0c;为学子们打开了深入了解计算机系统运行机制的大门。 操作系统课程首先会带领你探索操作系统的基本概念。你会明白操作系统是一种系统软件&#xff0c;它管理着计算机的硬件资源和软件资源&…

win系统接入google_auth实现动态密码,加强保护

开源代码地址&#xff1a;windows动态密码: 针对win服务器进行的动态密码管控&#xff0c;需要配合谷歌的身份认证APP使用 (gitee.com) 为什么要搞个动态密码呢&#xff1f; 首先云服务器启用了远程访问&#xff0c;虽然更换了端口以及初始用户名&#xff0c;不过还是是不是被…

核心复现—计及需求响应的区域综合能源系统双层优化调度策略

目录 一、主要内容&#xff1a; 二、摘要介绍&#xff1a; 三、综合能源系统结构&#xff1a; 四、实际仿真运行结果&#xff1a; 五、 代码及数据下载&#xff1a; 一、主要内容&#xff1a; 在模型构建部分&#xff1a;建立了一个综合能源系统双层优化调度模型&#xf…

南京服务器测评【浪浪云】

前言 优质的服务器对于企业来说无疑是一把快速实现科技化成长的利剑。而南京&#xff0c;作为中国科技龙头之一的城市&#xff0c;也对服务器的需求愈发旺盛。而作为国内领先的云服务商&#xff0c;浪浪云致力于用科技培植企业的成长&#xff0c;其在南京的服务器便是企业数字化…

计算机毕业设计springboot+vue项目分享在线服务平台

目录 功能和技术介绍系统实现截图开发核心技术介绍&#xff1a;使用说明开发步骤编译运行需求分析系统设计软件测试核心代码部分展示详细视频演示源码获取 功能和技术介绍 本项目包含程序源码和MySql脚本和文档,idea开发,支持Eclipse。使用vue的本质是SpringFramework【IoC&am…

0基础跟德姆(dom)一起学AI 数据处理和统计分析07-分组和会员数据分析

向量化函数及Lambda表达式 * 分组操作相关 * 分组聚合 * 分组转换 * 分组过滤 * DataFrameGroupBy对象介绍 * 会员分析案例-数据透视表 --- 1.向量化函数 * 分析代码 python def avg_test2(x,y): if x20: return np.NaN else: retu…

【OSS安全最佳实践】对OSS内身份证图片中身份证号进行脱敏

为确保存储在私有OSS Bucket特定文件夹中包含中国内地身份证信息的PNG、JPG、JPEG、BMP或WEBP格式图片&#xff0c;在与其他用户共享时身份证信息不被泄露&#xff0c;可使用数据安全中心 DSC&#xff08;Data Security Center&#xff09;的图片脱敏功能。DSC目前仅支持对身份…

react hooks--useRef

基本用法 在类组件中获取一个dom元素实例&#xff0c;可以通过React.CreateRef或者回调函数的方式去获取。语法&#xff1a;const refContainer useRef(initialValue);使用场景&#xff1a;在 React 中进行 DOM 操作时&#xff0c;用来获取 DOM作用&#xff1a;返回一个带有 …

构建高可用和高防御力的云服务架构第五部分:PolarDB(5/5)

引言 云计算与数据库服务 云计算作为一种革命性的技术&#xff0c;已经深刻改变了信息技术行业的面貌。它通过提供按需分配的计算资源&#xff0c;使得数据存储、处理和分析变得更加灵活和高效。在云计算的众多服务中&#xff0c;数据库服务扮演着核心角色。数据库服务不仅负…

【C++高阶】深入理解C++ I/O流:标准库中的隐藏宝石

&#x1f4dd;个人主页&#x1f339;&#xff1a;Eternity._ ⏩收录专栏⏪&#xff1a;C “ 登神长阶 ” &#x1f921;往期回顾&#x1f921;&#xff1a;C 特殊类 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; ❀ C IO流 &#x1f4d2;1. C语言的输入…

Stable Diffusion 优秀博客转载

初版论文地址&#xff1a;https://arxiv.org/pdf/2112.10752 主要流程图&#xff1a; Latent Diffusion Models&#xff08;LDMs&#xff09; DDPM是"Denoising Diffusion Probabilistic Models"的缩写&#xff0c; 去噪扩散概率模型 博客&#xff1a; 【论文阅读…

单发超快光场成像技术研究进展

摘要&#xff1a;单发超快光场成像技术能够在更广泛的条件下表征瞬态事件&#xff0c;为探索不可重复和难以再现的超快现象打开了大门&#xff0c;是探索未知领域必不可少的工具&#xff0c;具有巨大的科学技术应用价值。介绍近年来单发超快光场成像技术的研究进展&#xff0c;…

【Finetune】(三)、transformers之P-Tuning微调

文章目录 0、P-Tuning基本原理1、代码实战1.1、导包1.2、加载数据集1.3、数据集预处理1.4、创建模型1.5、P-tuning*1.5.1、配置文件1.5.2、创建模型 1.6、配置训练参数1.7、创建训练器1.8、模型训练1.9、模型推理 0、P-Tuning基本原理 P-Tuning的基本思想是在prompt-tuning的基…

预付费计量系统实体模型

1. 预付费计量系统实体模型 A generic entity model for electricity payment metering systems is shown in Figure 2. Although it provides a limited perspective, it does serve to convey certain essential concepts. 关于电子式预付费电表系统的实体模型见图 2…

如何选购笔记本电脑?要看哪些参数?

如何选购笔记本电脑&#xff1f;要看哪些参数&#xff1f; 文章目录 如何选购笔记本电脑&#xff1f;要看哪些参数&#xff1f;1、CPU&#xff08;中央处理器&#xff09;2、GPU&#xff08;显卡&#xff09;3、RAM&#xff08;内存&#xff09;4、硬盘5、屏幕6、散热7、接口8、…

前端工程化4:从0到1构建完整的前端监控平台

前言 一套完整的前端监控系统的主要部分&#xff1a; 数据上报方式数据上送时机性能数据采集错误数据采集用户行为采集定制化指标监控sdk 监控的目的&#xff1a; 一、数据上报方式 本文的方案是&#xff0c;优先navigator.sendBeacon&#xff0c;降级使用1x1像素gif图片…

Java | Leetcode Java题解之第417题太平洋大西洋水流问题

题目&#xff1a; 题解&#xff1a; class Solution {static int[][] dirs {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};int[][] heights;int m, n;public List<List<Integer>> pacificAtlantic(int[][] heights) {this.heights heights;this.m heights.length;this.n…

[数据结构与算法·C++] 笔记 2.1 线性表

线性结构 概念 二元组 B ( K , R ) B(K,R) B(K,R) K a 0 , a 1 , . . . , a n − 1 K{a_0,a_1,...,a_{n-1}} Ka0​,a1​,...,an−1​ ( R r R{r} Rr) 有一个唯一的开始结点&#xff0c;它没有前驱&#xff0c;有一个唯一的直接后继一个唯一的终止结点&#xff0c;它有一个…

了解你的GPU:深入探讨AMD SMI

Getting to Know Your GPU: A Deep Dive into AMD SMI — ROCm Blogs 2024年9月17日 作者&#xff1a;Matt Elliott 对于使用AMD硬件的系统管理员和高级用户来说&#xff0c;性能优化和高效的资源监控至关重要。AMD系统管理界面命令行工具amd-smi正是为了解决这些需求而设计的。…

uni-app功能 1. 实现点击置顶,滚动吸顶2.swiper一个轮播显示一个半内容且实现无缝滚动3.穿透修改uni-ui的样式

uni-app项目中遇到的功能 文章目录 uni-app项目中遇到的功能一、实现点击置顶&#xff0c;滚动吸顶、1.1、scroll-view设置不生效的原因和解决办法1.2 功能代码 二、swiper一个轮播显示一个半内容且实现无缝滚动三、穿透修改uni-ui的样式 一、实现点击置顶&#xff0c;滚动吸顶…