关系数据库设计之Armstrong公理详解

在这里插入图片描述

~犬📰余~

“我欲贱而贵,愚而智,贫而富,可乎?
曰:其唯学乎”

一、Armstrong公理简介

    Armstrong公理是一组在关系数据库理论中用于推导属性依赖的基本规则。这些公理是以著名计算机科学家威廉·阿姆斯特朗(William W. Armstrong)命名的。Armstrong公理提供了一种形式化的方法,用于推导关系数据库中的所有属性依赖。通过使用这套公理,我们可以理解和掌握一个数据库的所有潜在的属性依赖,从而帮助设计合理的数据库模式,确保数据的一致性与完整性。
    在关系数据库中,属性依赖是一个核心概念。它描述了一个属性集合如何通过另一个属性集合来确定,换句话说,若存在两个属性集合 ( X ) 和 ( Y ),若 ( X ) 可以唯一地确定 ( Y ),那么我们说 ( X → Y ),即 ( Y ) 函数依赖于 ( X )。Armstrong公理为我们提供了推导属性依赖的基础工具,使得我们能够通过有限的一组规则来确定数据库中的所有可能存在的依赖。

二、Armstrong公理的组成

    Armstrong公理包括三条基本规则,它们分别是:

1. 反身性

    若属性集合 ( Y ) 是 ( X ) 的子集,则 ( X → Y ) 成立。即:

X⊇Y⇒X→Y

2. 增广性

    如果 ( X → Y ),则 ( XZ → YZ ) 也成立。即,如果 ( Y ) 是 ( X ) 的函数依赖属性,则在任何集合 ( Z ) 加入到两侧的情况下,依赖关系仍然成立:

X→Y⇒XZ→YZ

3. 传递性

    如果 ( X → Y ) 且 ( Y → Z ),则 ( X → Z ) 也成立。即:

X→Y and Y→Z⇒X→Z

三、Armstrong公理的扩展

    上述三条公理是推导数据库中所有函数依赖关系的基础。在实际应用中,这三条基本规则常与如下推导规则一起使用,这些规则可从Armstrong公理中导出,帮助我们更高效地推导依赖关系:

1.并合性

    如果 ( X → Y ) 且 ( X → Z ),则 ( X → YZ )。换句话说,如果一个属性集合可以分别决定两个属性集,它也可以决定它们的并集。并合性可以通过反复使用Armstrong公理的增广性和传递性推导出来:

X→Y and X→Z⇒X→YZ
    例如,假设 ( A → B ) 且 ( A → C ),那么根据并合性,( A → BC ) 也是成立的。这条规则对简化多个函数依赖的分析非常有用。

2.分解性

    如果 ( X → YZ ),那么 ( X → Y ) 和 ( X → Z ) 都成立。即,如果一个属性集合可以决定某个并集,那么它也可以决定并集中的每一个子集。分解性也是通过Armstrong公理推导出来的:

X→YZ⇒X→Y and X→Z
    例如,如果 ( A → BC ) 成立,那么我们可以推导出 ( A → B ) 和 ( A → C ) 都是成立的。这条规则对识别复杂依赖关系的组成部分非常有用。

3.伪传递性

    伪传递性是一种类似于传递性的规则,它表明如果 ( X → Y ) 且 ( WY → Z ),则 ( WX → Z ) 成立。这条规则适用于处理那些不仅依赖于单个属性集合的复杂函数依赖关系:

X→Y and WY→Z⇒WX→Z
    伪传递性适合用于数据库设计的某些特殊场景,它帮助我们在复杂函数依赖链中找出新的依赖关系。

四、Armstrong公理的应用

    Armstrong公理在关系数据库设计的多个方面都有应用,尤其在以下几个领域:

1. 规范化

    关系数据库的规范化过程旨在减少数据冗余和避免插入、删除和更新异常。在规范化过程中,我们需要识别关系中的所有函数依赖,以便将关系分解为更小的、没有冗余的子关系。Armstrong公理在这一过程中扮演了重要角色,它帮助我们推导出所有可能的依赖关系,从而更好地进行分解。
    例如,在第三范式(3NF)的分解过程中,我们需要确保所有非主属性完全依赖于主键,而不是部分依赖或传递依赖。通过使用Armstrong公理的传递性规则,我们能够识别传递依赖,从而进行适当的分解。

2. 属性闭包

    属性闭包是关系数据库设计中的一个重要工具,用于确定一个属性集合的所有可以通过函数依赖推导出的属性。Armstrong公理的反身性、增广性和传递性规则在计算属性闭包时尤为重要。通过应用这些公理,我们能够系统地推导出一个属性集合能够确定的所有属性。
    例如,给定一个关系模式 ( R(A, B, C, D) ) 和已知的依赖关系 ( A → B ) 和 ( B → C ),我们可以通过计算 ( A ) 的闭包来确定 ( A ) 可以唯一决定哪些属性。根据Armstrong公理的传递性,闭包计算结果为 ( A^+={A, B, C} )。

3. 推导最小依赖集

    在设计数据库时,我们通常希望找到一个最小的函数依赖集,即在保留所有推导能力的前提下,减少冗余的依赖关系。Armstrong公理在推导最小依赖集的过程中非常有用,因为它允许我们系统化地分析哪些依赖是可以从其他依赖推导出来的,从而简化依赖集。

五、Armstrong公理与数据库规范化

    Armstrong公理在数据库的规范化过程中发挥着关键作用。规范化旨在将关系数据库中的关系模式分解为更小的、无冗余的子关系,以确保数据一致性并避免更新异常。规范化的目标是使数据库达到某些范式(Normal Form),如第一范式(1NF)、第二范式(2NF)、第三范式(3NF)以及BCNF(Boyce-Codd Normal Form)。

1. 第一范式(1NF)

    第一范式要求所有属性的值都是原子的,即不可再分割。Armstrong公理在1NF中的作用相对较少,因为这一范式主要关注的是数据的基本结构。

2. 第二范式(2NF)

    第二范式要求所有非主属性完全依赖于主键,即不存在部分依赖。通过Armstrong公理中的传递性和反身性,我们能够识别哪些非主属性部分依赖于主键,然后根据这些依赖进行分解,确保关系模式符合2NF。

3. 第三范式(3NF)

    第三范式进一步要求消除传递依赖,即非主属性不能依赖于其他非主属性。Armstrong公理的传递性规则在3NF的分解中尤为重要。通过传递性,我们能够识别出隐含的传递依赖,然后对关系模式进行适当分解,确保其符合3NF。

4. BCNF

    BCNF是一种更严格的第三范式,它要求每个函数依赖的左侧必须是超键。通过Armstrong公理中的各种推导规则,我们能够识别哪些属性不是超键,从而进行更细致的分解,确保模式符合BCNF。

六、Armstrong公理的局限性

    尽管Armstrong公理非常强大,但它并不是完备的,它存在一些局限性,尤其是在处理更复杂的依赖关系时。

1. 无法处理多值依赖

    Armstrong公理只能处理函数依赖,而无法处理多值依赖。多值依赖是一种更复杂的依赖关系,它描述了一个属性集的多值与另一个属性集之间的依赖。对于多值依赖,我们需要引入其他规则,如第五范式(5NF)等。

2. 无法处理连接依赖

    连接依赖是一种更为复杂的依赖关系,它涉及关系的连接操作。Armstrong公理无法直接推导出这样的依赖。对于处理连接依赖的场景,通常需要结合其他理论工具,如第六范式(6NF)等。

3. 难以处理大规模依赖集

    在处理大规模依赖集时,尽管Armstrong公理提供了系统化的推导工具,但由于依赖链条过长,实际操作中的推导过程可能会变得非常复杂且难以管理。

在这里插入图片描述

关注犬余,共同进步

技术从此不孤单

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/147508.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

优化内存工具 | RAM Saver Pro v24.9 便携版

RAM Saver是一款专业的RAM优化工具,旨在提高计算机的性能和运行速度。它通过多种优化技术,如内存碎片整理、CPU和主板缓存效率提升、恢复内存等,为应用程序提供更多的内存资源,从而使系统运行更加流畅。适合所有需要优化内存使用和…

EMT-LTR--学习任务间关系的多目标多任务优化

EMT-LTR–学习任务间关系的多目标多任务优化 title: Learning Task Relationships in Evolutionary Multitasking for Multiobjective Continuous Optimization author: Zefeng Chen, Yuren Zhou, Xiaoyu He, and Jun Zhang. journal: IEE…

银河麒麟V10系统崩溃后的处理

银河麒麟V10系统崩溃后的处理 💖The Begin💖点点关注,收藏不迷路💖 当银河麒麟桌面操作系统V10崩溃无法启动时,直接使用备份还原工具不可行。此时,应采取以下步骤: 进入救援模式或LiveCD&#x…

攻防世界---->Windows_Reverse1

学习笔记。 前言:不会,代码越简洁,越难受 T ^ T 下载 查壳。 UPX脱壳。 此题脱壳后的程序,是不能运行的。 网上wp,说是因为作者采用了ASLR(地址随机化) 解决方法:一:用XP运行调试。 方法二&a…

0基础跟德姆(dom)一起学AI 数据处理和统计分析05-Pandas数分入门

* DataFrame读写文件 * DataFrame加载部分数据 * DataFrame分组聚合计算 * DataFrame常用排序方式 * DataFrame案例-链家数据分析 --- 1.DataFrame-保存数据到文件 * 格式 python df对象.to_数据格式(路径) # 例如: df.to_csv(data/abc.csv) * 代码演示 > 如…

Deepin man 没有关于printf 的手册页条目

问题 man 3 printf:在第 3 节中没有关于 printf 的手册页条目。 解决方法:安装manpages发开库。 搜索包 apt search manpages安装 sudo apt install manpages-dev若没有manpages-dev,安装manpages-posix-dev,应该也可以&#x…

【成品论文】2024年华为杯研赛E题25页高质量成品论文(后续会更新

您的点赞收藏是我继续更新的最大动力! 一定要点击如下的卡片链接,那是获取资料的入口! 点击链接加入【2024华为杯研赛资料汇总】:https://qm.qq.com/q/Mxv2XNWxUc https://qm.qq.com/q/Mxv2XNWxUc 高速公路应急车道紧急启用模型…

深度学习02-pytorch-03-张量的数值计算

张量(Tensor)是多维数组的通用化概念,它可以表示标量(0维)、向量(1维)、矩阵(2维)以及更高维度的数据。在深度学习和数值计算中,张量是基础数据结构&#xff…

基于python的api扫描器系统的设计与实现

💗博主介绍💗:✌在职Java研发工程师、专注于程序设计、源码分享、技术交流、专注于Java技术领域和毕业设计✌ 温馨提示:文末有 CSDN 平台官方提供的老师 Wechat / QQ 名片 :) Java精品实战案例《700套》 2025最新毕业设计选题推荐…

MySQL练手题--周内每天销售情况(困难)

一、准备工作 Create table If Not Exists Orders (order_id int, customer_id int, order_date date, item_id varchar(30), quantity int); Create table If Not Exists Items (item_id varchar(30), item_name varchar(30), item_category varchar(30)); Truncate table Or…

【软件文档】软件项目试运行方案(word实际套用2024)

软件项目试运行方案(Word原件参考) 一、试运行目的 二、试运行的准备 三、试运行时间 四、试运行制度 五、试运行具体内容与要求 软件全套资料部分文档清单: 工作安排任务书,可行性分析报告,立项申请审批表&#xff0c…

python画图1

import matplotlib.pyplot as pltplt.rcParams["font.sans-serif"] ["SimHei"]# 模拟数据 years [2016, 2017, 2018, 2019, 2020, 2021, 2022] market_size [7950, 8931, 9940, 11205, 12305, 13199, 14980] my_color #3e9df5plt.plot(years, market_s…

《他们的奇妙时光》圆满收官,葛秋谷新型霸总获好评

9月21日,由王枫、张开法执导,周洁琼、葛秋谷领衔主演的奇幻爱情题材都市喜剧《他们的奇妙时光》圆满收官。该剧讲述了意外被游戏角色刑天附体的设计师宋灵灵,为修复游戏漏洞,被迫与能压制刑天的甲方总裁萧然同居,两人在…

局域网设备自动发现常用方法

文章目录 需求实现方法ARP (Address Resolution Protocol)Ping ip的流程抓包如下代码实现 mDNS 对比测试Avahi 介绍Avahi 安装Avahi 使用测试代码 需求 局域网设备自动发现是软件开发中的一个常见且重要的需求,它简化了设备间的协作机制,降低了软件各模…

MySQL内存(Buffer Pool)

Buffer Pool MySQL 的数据存在磁盘,但是不能每次读取数据都从磁盘里去,这样磁盘IO太频繁,存在性能问题。 InnoDB设计了一个缓存池(Buffer Pool),缓冲池在内存中。 默认配置Buffer Pool大小为128MB&#xf…

Trapezoidal Decomposition梯形分解算法(TCD)

系列文章目录 提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 TODO:写完再整理 文章目录 系列文章目录前言Trapezoidal Decomposition梯形分解算法(TCD)原理(1)第一种原理(2…

DataX实战:从MongoDB到MySQL的数据迁移--修改源码并测试打包

在现代数据驱动的业务环境中,数据迁移和集成是常见的需求。DataX,作为阿里云开源的数据集成工具,提供了强大的数据同步能力,支持多种数据源和目标端。本文将介绍如何使用DataX将数据从MongoDB迁移到MySQL。 环境准备 安装MongoDB…

智慧医院人工智能应用场景 | 智能导诊系统源码

近年来,智能医疗在国内外的发展热度不断提升。图像识别、深度学习、神经网络、大模型、语音等关键技术的突破带来了人工智能技术新一轮的发展。 场景一:智能机器人 医疗机器人是指能够在医疗领域执行特定任务或功能的机器人,包括手术机器人、…

【LLaMa2入门】从零开始训练LLaMa2

目录 1 背景2 搭建环境2.1 硬件配置2.2 搭建虚拟环境2.2.1 创建虚拟环境2.2.2 安装所需的库 3 准备工作3.1 下载GitHub代码3.2 下载模型3.3 数据处理3.3.1 下载数据3.3.2 数据集tokenize预处理 4 训练4.1 修改配置4.2 开始训练4.3 多机多卡训练 5 模型推理5.1 编译5.1.1 安装gc…

Java算法专栏

专栏导读 在当今这个技术日新月异的时代,Java算法作为软件开发的核心,对于提升程序性能和解决复杂问题至关重要。本“Java算法”专栏旨在帮助读者深入理解Java编程语言中的算法原理和应用,通过实战案例和深入分析,使读者能够掌握…