首推!AI大模型课程2024年最新版!从零基础到入行大模型算法工程师,看完这一篇就够了,学完来找我内推!

技术学习无非涵盖三个方面,理论,实践和应用**”**

大模型技术爆火至今已经有两年的时间了,而且大模型技术的发展潜力也不言而喻。因此,很多人打算学习大模型,但又不知道该怎么入手,因此今天就来了解一下大模型的学习路线。‍‍

丁元英说:“透视社会有三个层面,技术,制度与文化”;同样的,技术学习同样有三个层面,理论,实践和应用,三者相辅相成,缺一不可。

技术的意义在于解决问题

01

大模型技术学习的理论,实践与应用‍‍‍‍‍‍‍‍

学习大模型技术需要系统性的理论基础,实践技能以及最新的研究进展和应用场景。以下是一个大模型学习进阶路线,涵盖了理论,技术和应用等方面。‍‍‍‍‍‍‍‍‍‍‍‍‍‍

理论基础

大模型学习需要有一定的理论基础,特别是数学,机器学习,自然语言处理等方面。‍‍‍‍‍‍‍‍‍

数学与统计学

  • 线性代数:矩阵运算,特征值,奇异值分解等‍‍‍‍‍‍

  • 概率论和统计学:随机变量,概率分布,贝叶斯定理等‍‍‍‍

  • 微积分:偏导数,梯度下降,最优化等

机器学习基础

  • 监督学习:回归,分类,支持向量机等‍‍

  • 无监督学习:聚类,降维,主成分分析等‍‍‍‍‍‍‍‍‍

  • 深度学习基础:神经网络,反向传播,激活函数等‍

在这里插入图片描述

自然语言处理

语言模型:n-gram,Word2Vec,BERT,GPT等‍‍‍‍‍‍‍‍‍‍‍‍‍‍

序列模型:RNN,LSTM,Transformer等‍‍‍‍‍‍

_大模型的核心_‍‍

  • 预训练模型:理解什么是预训练及其在大模型中的应用

  • 自监督学习:掌握自监督学习的概念及其在预训练中的应用‍‍‍

  • 注意力机制:深入理解注意力机制及其在Transformer架构中的作用‍‍‍

  • 多模态学习:了解如何处理文本,图像,音视频等多模态数据‍‍

实践技能

_编程语言_‍‍

Python:python作为目前大模型主要的开发语言,熟悉python基础,Numpy,Pandas数据处理工具‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

_深度学习框架_‍

TensorFlow/PyTorch: 学习如何使用这些框架构建和训练深度学习模型‍‍

_模型实现_‍

从头实现:动手实现简单的神经网络,Transformer模型,理解模型结构和训练流程‍‍

迁移学习:使用预训练模型并进行微调,适应特定任务

在这里插入图片描述

_大规模训练_‍

分布式训练:学习如何在多GPU或多节点环境下进行模型训练‍‍‍‍‍

优化技术:理解学习率调度,梯度剪裁,模型压缩等技术

_项目与实战_‍

  • 构建项目:设计和实现一个完整的大模型项目,从数据准备到模型部署‍‍‍

  • 开源贡献:参与开源深度学习框架或大模型相关项目的开发,积累实战经验‍‍

  • 挑战赛:参加如Kaggle等平台的AI挑战赛,检验自己的技术水平‍‍‍‍‍‍‍‍‍

_前沿技术_‍

  • 生成式模型:深度研究生成式模型如GPT,DALL-E,Stable-Diffusion等‍‍‍

  • 多模态大模型:学习如果构建和训练多模态模型,处理图像,文本,音频等多种数据

  • 自监督学习:研究自监督学习的最新进展及其在大模型中的应用

  • 增强学习:了解增强学习在大模型中的应用,如RLHF(通过人类反馈进行强化学习)

_实际应用_‍‍‍‍‍

应用场景:探索大模型在自然语言处理,计算机视觉,语音识别等领域的应用‍‍‍

案例研究:分析ChatGPT,BERT,DALL-E等实际案例,理解大模型的应用细节‍‍‍‍‍‍‍

开源项目:参与开源项目或复现学术论文中的模型,提升实战能力‍‍‍‍

在这里插入图片描述

持续学习

大模型技术处于一个飞速发展的过程,今天合适的正确理论,或许明天就不是那么正确;今天的好方法或许明天就会有更合适的解决方案,因此持续学习是一个必不可少的技能。‍‍‍‍‍‍‍

阅读论文:关注顶会(如NeurlIPS,ICML,ACL等)等最新论文研究,了解前沿技术‍‍‍‍‍‍‍‍‍

_学习资源_‍

在线课程:如Coursera,edX上的深度学习课程‍‍‍‍‍‍

博客与文档:阅读如Distill,Medium等平台的技术博客‍‍‍‍‍‍

社区参与:加入AI技术社区,参与讨论,分享知识‍‍

大模型的主要应用形式之一,聊天机器人:‍‍‍‍‍

总结与提升

经验总结:定期回顾学习过程,总结技术要点和实战经验

跨学科融合:探索大模型在其它领域(如金融,法律,医疗等)等应用,扩展知识广度‍

如果用一句话总结就是,学习——实践——再学习——再实践。‍‍‍‍‍‍‍

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/7798.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

一站式搭建线上线下交友平台/全开源码交付前后端安装说明

功能亮点 灵魂匹配:基于个人喜好和兴趣,为你推荐最合适的交友对象。 真实认证:所有用户都经过严格认证,确保交友环境真实可靠。 隐私保护:强大的隐私设置,让你轻松掌控个人信息和交友动态。 互动便捷&…

基于数组实现的Huffman树和Huffman编码

一、Huffman树简介 1、定义 树的带权路径长度,就是树中所有的叶节点的权值乘上其到根节点的路径长度。 在含有n 个带权叶子结点的二叉树中,其中带权路径长度(Weighted Path Length, WPL)最小的二叉树称为哈夫曼树, 也…

图说复变函数论重大错误:将无穷多各异平面误为同一面

黄小宁 医学若将前所未知的“新冠”病毒误为已熟知的流感病毒,后果...;数学将前所未知的点集误为已熟知的集就会引出一连串的重大错误。 h定理:点集AB的必要条件是A≌B。 证:(1)任何图≌自己是几何学最起码…

SDL简介和初次尝试

文章目录 SDL的用途和概念SDL下载 SDL的用途和概念 SDL(Simple DirectMedia Layer)是一套开放源代码的跨平台开发库 ,使用C语言写成,SDL提供了数种 操作 图像 ,声音输入输出的函数,让开发者使用 相识的代码 就能够开发出跨平台的…

WiFi一直获取不到IP地址是怎么回事?

在当今这个信息化时代,WiFi已成为我们日常生活中不可或缺的一部分。无论是家庭、办公室还是公共场所,WiFi都为我们提供了便捷的无线互联网接入。然而,有时我们可能会遇到WiFi连接后无法获取IP地址的问题,这不仅影响了我们的网络使…

【车道线检测】一、传统车道线检测:基于霍夫变换的车道线检测史诗级详细教程

1、定义图像显示函数 首先定义一个函数,函数的作用是通过plt库显示两幅图,为后续实验做准备。该函数的主要功能是: 从指定路径加载图像显示图像的基本信息将图像从BGR格式转换为RGB格式并在一个图形窗口中显示两幅图像进行对比 import nump…

Ftrans数据跨境传输方案:保护隐私与促进合作

数据跨境传输是指在不同国家、地区和法律框架下进行的数据交换和传输,数据跨境传输流程周期是数据产生--数据传输--数据接收,而困境来源也来自这3个环节: 1.本地合规限制 数据出口国(数据输出国)的法律对于数据收集的…

Mybatis学习笔记(三)

十、MyBatis的逆向工程 (一)逆向工程介绍 MyBatis的一个主要的特点就是需要程序员自己编写sql,那么如果表太多的话,难免会很麻烦,所以mybatis官方提供了一个逆向工程,可以针对单表自动生成mybatis执行所需要的代码(包…

Github 2024-11-08Java开源项目日报 Top9

根据Github Trendings的统计,今日(2024-11-08统计)共有9个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Java项目9Vue项目1经验丰富的Java(后端)开发人员核心面试问题和答案 | 互联网Java工程师进阶知识完全扫盲 创建周期:2085 天开发语言:Java协议…

【新闻文本分类识别】Python+CNN卷积神经网络算法+深度学习+人工智能+机器学习+文本处理

一、介绍 文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集(“体育类”, “财经类”, “房产类”, “家居类”, “教育类”, “科技类”, “时尚类”, “时政类”, “游戏类”, “娱乐类”),然…

数据结构 ——— 链式二叉树的前中后序遍历递归实现

目录 前言 链式二叉树示意图​编辑 手搓一个链式二叉树 链式二叉树的前序遍历 链式二叉树的中序遍历 链式二叉树的后序遍历 前言 在上一章学习了链式二叉树的前中后序遍历的解析 数据结构 ——— 链式二叉树的前中后序遍历解析-CSDN博客 接下来要学习的是代码实现链式…

<项目代码>YOLOv8 pcb板缺陷检测<目标检测>

YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的…

yarn报错`warning ..\..\package.json: No license field`:已解决

出现这个报错有两个原因 1、项目中没有配置许可证 在项目根目录package.json添加 {"name": "next-starter","version": "1.0.0",# 添加这一行"license": "MIT", }或者配置私有防止发布到外部仓库 {"priv…

大模型学习笔记------CLIP模型解读与思考

大模型学习笔记------CLIP模型详解 1、为什么提出CLIP模型2、CLIP模型详解3、CLIP模型的意义4、一些思考 上文说到,多模态大模型应该是非常有发展前景的,首先来学习 CLIP(Contrastive Language-Image Pretraining)这个多模态模型…

昇思25天学习打卡营第1天|快速入门

昇思25天学习打卡营第1天|快速入门 目录 昇思25天学习打卡营第1天|快速入门实操教程 一、MindSpore内容简介 主要特点: MindSpore的组成部分: 二、入门实操步骤 1. 安装必要的依赖包 2. 下载并处理数据集 3. 构建网络模型 4. 训练模型 5. 测试…

【Python TensorFlow】入门到精通

TensorFlow 是一个开源的机器学习框架,由 Google 开发,广泛应用于机器学习和深度学习领域。本篇将详细介绍 TensorFlow 的基础知识,并通过一系列示例来帮助读者从入门到精通 TensorFlow 的使用。 1. TensorFlow 简介 1.1 什么是 TensorFlow…

Python 学习完基础语法知识后,如何进一步提高?

入门Python后,就可以拿些小案例练手了,这时候千万不要傻乎乎地成天啃语法书。 编程是一门实践的手艺,讲究孰能生巧。不管是去手撸算法、或者照葫芦画瓢写几个小游戏都可以让你的Python突飞猛进。 之前看github比较多,推荐给大家…

Java:数据结构-再谈String类

字符串常量池 首先我们来思考这段代码,为什么运行结果一个是true,一个是false呢? public class Test {public static void main(String[] args) {String s1"123";String s2"123";String s3new String("555")…

书生第四期实训营基础岛——L1G2000 玩转书生「多模态对话」与「AI搜索」产品

基础任务 MindSearch使用示例 书生浦语使用示例 书生万象使用示例 进阶任务 问题:目前生成式AI在学术和工业界有什么最新进展? 回答截图: 知乎回答链接:目前生成式AI在学术和工业界有什么最新进展?

ReactPress:重塑内容管理的未来

ReactPress Github项目地址:https://github.com/fecommunity/reactpress 欢迎提出宝贵的建议,欢迎一起共建,感谢Star。 ReactPress:重塑内容管理的未来 在当今信息爆炸的时代,一个高效、易用的内容管理系统&#xff0…