hello everybody,好久不见,由于前些日子在学习文件操作,预处理相关知识,导致我好些天没写博客了,所以我先从数据结构开始写吧,等后面熟练些了再补回来,欧克,话不多说,进入我们今天的主题:复杂度
1.数据结构前言
1.1数据结构
数据结构(Data Structure)是计算机存储、组织数据的⽅式,指相互之间存在⼀种或多种特定关系的数据元素的集合。没有⼀种单⼀的数据结构对所有⽤途都有⽤,所以我们要学各式各样的数据结构,如:线性表、树、图、哈希等
1.2算法
算法(Algorithm):就是定义良好的计算过程,他取⼀个或⼀组的值为输⼊,并产⽣出⼀个或⼀组值作为输出。简单来说算法就是⼀系列的计算步骤,⽤来将输⼊数据转化成输出结果。
1.3数据结构和算法的重要性
那么如何学好数据结构呢?两点,一是死磕代码,二是画图理解,数据结构是各种比一样结构,我们画图去理解会更容易点。当然再看点牛逼大佬的书籍会更好,比如严蔚敏的《数据结构》,ThomasH. Cormen的《算法导论》,程杰的《大话数据结构》等(真不是托)
2.算法效率
2.1复杂度的概念
算法在编写成可执⾏程序后,运⾏时需要耗费时间资源和空间(内存)资源 。因此衡量⼀个算法的好坏,⼀般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。时间复杂度主要衡量⼀个算法的运⾏快慢,⽽空间复杂度主要衡量⼀个算法运⾏所需要的额外空间。
在计算机发展的早期,计算机的存储容量很⼩。所以对空间复杂度很是在乎。但是经过计算机⾏业的迅速发展,计算机的存储容量已经达到了很⾼的程度。所以我们如今已经不需要再特别关注⼀个算法的空间复杂度。
2.2复杂度的重要性
复杂度在校招考察的很常见了,如下:
3.时间复杂度
定义:在计算机科学中,算法的时间复杂度是⼀个函数式T(N),它定量描述了该算法的运⾏时间。 算法的时间复杂度是⼀个函数式T(N)是什么意思呢?这个T(N)函数式计算了程序的执⾏次数。通 过c语⾔编译链接章节学习,我们知道算法程序被编译后⽣成⼆进制指令,程序运⾏,就是cpu执⾏这 些编译好的指令。那么我们通过程序代码或者理论思想计算出程序的执⾏次数的函数式T(N),假设每 句指令执⾏时间基本⼀样(实际中有差别,但是微乎其微),那么执⾏次数和运⾏时间就是等⽐正相关, 这样也脱离了具体的编译运⾏环境。执⾏次数就可以代表程序时间效率的优劣。⽐如解决⼀个问题的算法a程序T(N) = N,算法b程序T(N) = N^2,那么算法a的效率⼀定优于算法b。
我们只需要计算程序能代表增⻓量级的⼤概执⾏次数,复杂度的表⽰通常使⽤⼤O的渐进表⽰法。
3.1大O的渐进表示法
⼤O符号(Big O notation):是⽤于描述函数渐进⾏为的数学符号
推导⼤O阶规则
1. 时间复杂度函数式 T(N) 中,只保留最⾼阶项,去掉那些低阶项,因为当 N 不断变⼤时, 低阶项对结果影响越来越⼩,当 N ⽆穷⼤时,就可以忽略不计了
2.如果最⾼阶项存在且不是1,则去除这个项⽬的常数系数,因为当N不断变⼤,这个系数对结果影响越来越⼩,当N⽆穷⼤时,就可以忽略不计了。 3.T(N)中如果没有N相关的项⽬,只有常数项,⽤常数1取代所有加法常数。
3.2时间复杂度计算案列
示例1
// 计算Func1的时间复杂度?
void Func1(int N)
{
int count = 0;
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}
Func1执⾏的基本操作次数: T ( N ) = 2 N + 10 根据推导规则第3条得出 Func1的时间复杂度为: O ( N )
示例2
// 计算Func2的时间复杂度?
void Func2(int N, int M)
{
int count = 0;
for (int k = 0; k < M; ++ k)
{
++count;
}
for (int k = 0; k < N ; ++
k)
{
++count;
}
printf("%d\n", count);
}
Func2执⾏的基本操作次数: T ( N ) = M + N 因此:Func2的时间复杂度为: O ( N )
示例3
// 计算Func3的时间复杂度?
void Func3(int N)
{
int count = 0;
for (int k = 0; k < 100; ++ k)
{
++count;
}
printf("%d\n", count);
}
Func3执⾏的基本操作次数: T ( N ) = 100 根据推导规则第1条得出 Func3的时间复杂度为: O (1)
示例4
// 计算strchr的时间复杂度?
const char * strchr ( const char
* str, int character)
{
const char* p_begin = s;
while (*p_begin != character)
{
if (*p_begin == '\0')
return NULL;
p_begin++;
}
return p_begin;
}
strchr执⾏的基本操作次数:
1)若要查找的字符在字符串第⼀个位置,则: T ( N ) = 1
2)若要查找的字符在字符串最后的⼀个位置,则: T ( N ) = N
3)若要查找的字符在字符串中间位置,则: T ( N ) = 2 N
因此:strchr的时间复杂度分为:
最好情况: O (1)
最坏情况: O ( N )
平均情况: O ( N )
通过上⾯我们会发现,有些算法的时间复杂度存在最好、平均和最坏情况。
最坏情况:任意输⼊规模的最⼤运⾏次数(上界)
平均情况:任意输⼊规模的期望运⾏次数
最好情况:任意输⼊规模的最⼩运⾏次数(下界)
⼤O的渐进表⽰法在实际中⼀般情况关注的是算法的上界,也就是最坏运⾏情况。
示例5
// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
BubbleSort执⾏的基本操作次数:
1)若数组有序,则: T ( N ) = N
2)若数组有序且为降序,则: T ( N ) = ( N ∗ ( N+ 1))/2
因此:BubbleSort的时间复杂度取最差情况为: O ( N*N )
示例6
void func4(int n)
{
int cnt = 1;
while (cnt < n)
{
cnt *= 2;
}
}
当n=2时,执⾏次数为1
当n=4时,执⾏次数为2
当n=16时,执⾏次数为4
假设执⾏次数为 x ,则 2的x次方 = n
因此执⾏次数: x = log n
因此:func4的时间复杂度取最差情况为: O (log 2 n )
示例7
// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{if(0 == N)return 1;return Fac(N-1)*N;
}
调⽤⼀次Fac函数的时间复杂度为 O(1) ⽽在Fac函数中,存在n次递归调⽤Fac函数因此:阶乘递归的时间复杂度为: O ( n )
4.空间复杂度
空间复杂度也是⼀个数学表达式,是对⼀个算法在运⾏过程中因为算法的需要额外临时开辟的空间。空间复杂度计算规则基本跟实践复杂度类似,也使⽤⼤O渐进表⽰法。
注意:函数运⾏时所需要的栈空间(存储参数、局部变量、⼀些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运⾏时候显式申请的额外空间来确定
4.1空间复杂度计算示例
示例1
// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
函数栈帧在编译期间已经确定好了, 只需要关注函数在运⾏时额外申请的 空间。 BubbleSort额外申请的空间有 exchange等有限个局部变量,使⽤了常数个额外空间因此空间复杂度为 O (1)
示例2
// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
if(N == 0)
return 1;
return Fac(N-1)*N;
}
Fac递归调⽤了N次,额外开辟了N个函数栈帧,每个栈帧使⽤了常数个空间因此空间复杂度为: O ( N )
ok,这篇数据结构的开头到这里就结束了,其他知识后面会慢慢道来。