🔥个人主页🔥:孤寂大仙V
🌈收录专栏🌈:C++从小白到高手
🌹往期回顾🌹:【C++】STL----map和set
🔖 流水不争,争的是滔滔不息
AVL树通过维护树的平衡来确保搜索、插入和删除操作的时间复杂度始终为O(log n),其中n是树中节点的数量。这种自平衡特性使得AVL树在数据量较大时仍然能保持较高的效率。由于AVL树是一种二叉搜索树,它能够快速地定位到任何一个节点。这使得在数据量较大的情况下,查找特定节点的效率很高。
AVL树概念
- AVL树是最先发明的⾃平衡⼆叉查找树,AVL是⼀颗空树,或者具备下列性质的⼆叉搜索树:它的左右⼦树都是AV树,且左右⼦树的⾼度差的绝对值不超过1。AVL树是⼀颗⾼度平衡搜索⼆叉树,通过控制⾼度差去控制平衡。
- AVL树得名于它的发明者G. M. Adelson-Velsky和E. M. Landis是两个前苏联的科学家,他们在1962年的论⽂《An algorithm for the organization of information》中发表了它。
- AVL树实现这⾥我们引⼊⼀个平衡因⼦(balance factor)的概念,每个结点都有⼀个平衡因⼦,任何结点的平衡因⼦等于右⼦树的⾼度减去左⼦树的⾼度,也就是说任何结点的平衡因⼦等于0/1/-1,AVL树并不是必须要平衡因⼦,但是有了平衡因⼦可以更⽅便我们去进⾏观察和控制树是否平衡,就像⼀个⻛向标⼀样。
- AVL树整体结点数量和分布和完全⼆叉树类似,⾼度可以控制在 ,那么增删查改的效率也可以控制在 ,相⽐⼆叉搜索树有了本质的提升。
思考⼀下为什么AVL树是高度平衡搜索⼆叉树,要求高度差不超过1,⽽不是高度差是0呢?0不是更好的平衡吗?
画画图分析我们发现,不是不想这样设计,⽽是有些情况是做不到⾼度差是0的。⽐如⼀棵树是2个结点,4个结点等情况下,⾼度差最好就是1,⽆法作为⾼度差是0
AVL树的结构
template<class K,class V>
struct AVLTreeNode
{pair<K, V> _kv;AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _parent;int _bf;AVLTreeNode(const pair<K,V>& kv)_kv(kv),_left(nullptr),_right(nullptr),_parent(nullptr),_bf(0){}
};template<class K,class V>
class AVLTree
{typedef AVLTreeNode Node;
public:
.........
private:Node* _root=nullptr;
AVL树是一种二叉搜索树,先构造AVL树的节点,这里用pair<Key,T>存储键值对数据。前面的map和set文章中讲过键值对。AVL树的节点需要键值对数据,以及左指针、右指针、和链接父亲节点的指针、还得存储平衡因子。后构造这棵AVL树。
AVL树的实现
AVL树的插入
- 先按照搜索二叉树的规则对所需要的值进行插入。
- 进行插入后,影响祖先节点的高度,平衡因子肯定会发生变化。平衡因子需要进行更新大致分两种情况,最坏情况下平衡因子需要更新的跟节点才能平衡,另一种情况跟新到中间可能就已经平衡了。
- 更新平衡因子过程中,没有出现问题就结束了
- 更新平衡因⼦过程中出现不平衡,对不平衡⼦树旋转,旋转后本质调平衡的同时,本质降低了⼦树的⾼度,不会再影响上⼀层,所以插⼊结束。
平衡因子的更新
- 平衡因⼦ = 右⼦树⾼度-左⼦树⾼度
- 只有⼦树⾼度变化才会影响当前结点平衡因⼦。
- 插⼊结点,会增加⾼度,所以新增结点在parent的右⼦树,parent的平衡因⼦++,新增结点在parent的左⼦树,parent平衡因⼦–
- parent所在⼦树的⾼度是否变化决定了是否会继续往上更新
更新停⽌条件:
更新后parent的平衡因⼦等于0,更新中parent的平衡因⼦变化为-1->0 或者 1->0,说明更新前
parent⼦树⼀边⾼⼀边低,新增的结点插⼊在低的那边,插⼊后parent所在的⼦树⾼度不变,不会
影响parent的⽗亲结点的平衡因⼦,更新结束。
更新后parent的平衡因⼦等于1 或 -1,更新前更新中parent的平衡因⼦变化为0->1 或者 0->-1,说
明更新前parent⼦树两边⼀样⾼,新增的插⼊结点后,parent所在的⼦树⼀边⾼⼀边低,parent所
在的⼦树符合平衡要求,但是⾼度增加了1,会影响arent的⽗亲结点的平衡因⼦,所以要继续向上
更新。
更新后parent的平衡因⼦等于2 或 -2,更新前更新中parent的平衡因⼦变化为1->2 或者 -1->-2,说
明更新前parent⼦树⼀边⾼⼀边低,新增的插⼊结点在⾼的那边,parent所在的⼦树⾼的那边更⾼
了,破坏了平衡,parent所在的⼦树不符合平衡要求,需要旋转处理,旋转的⽬标有两个:1、把
parent⼦树旋转平衡。2、降低parent⼦树的⾼度,恢复到插⼊结点以前的⾼度。所以旋转后也不
需要继续往上更新,插⼊结束。
template<class K,class V>
class AVLTree
{typedef AVLTreeNode Node;
public:bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new node(kv);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else{return false;}}cur = new Node(kv);if (parent->_kv.first > kv.first){parent->_left = cur;}else{parent->_right = cur;}cur->_parent = parent;//控制平衡因子while (parent){if (cur == parent->_left){parent->_bf--;}else{parent->_bf++;}if (parent->_bf == 1 || parent->_bf == -1){parent = cur;parent->_parent = parent;}else if(parent->_bf == 2 || parent->_bf ==-2){//旋转代码}else if{return false;}}}
旋转
- 保持搜索树的规则
- 让旋转的树从不满⾜变平衡,其次降低旋转树的⾼度
旋转总共分为四种,左单旋/右单旋/左右双旋/右左双旋。
右旋
- 本图1展⽰的是10为根的树,有a/b/c抽象为三棵⾼度为h的⼦树(h>=0),a/b/c均符合AVL树的要求。10可能是整棵树的根,也可能是⼀个整棵树中局部的⼦树的根。这⾥a/b/c是⾼度为h的⼦树,是⼀种概括抽象表⽰,他代表了所有右单旋的场景
- 在a⼦树中插⼊⼀个新结点,导致a⼦树的⾼度从h变成h+1,不断向上更新平衡因⼦,导致10的平衡因⼦从-1变成-2,10为根的树左右⾼度差超过1,违反平衡规则。10为根的树左边太⾼了,需要往右边旋转,控制两棵树的平衡。
- 旋转核⼼步骤,因为5 < b⼦树的值 < 10,将b变成10的左⼦树,10变成5的右⼦树,5变成这棵树新的根,符合搜索树的规则,控制了平衡,同时这棵的⾼度恢复到了插⼊之前的h+2,符合旋转原则。如果插⼊之前10整棵树的⼀个局部⼦树,旋转后不会再影响上⼀层,插⼊结束了。
//右旋
void RtateR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR){subLR->_parent = parent;}Node* Pparent=parent->_parent;subL->_right = parent;parent->_parent = subL;if (parent==_root){_root = subL;subL->_parent = nullptr;}else{if (Pparent->_left == parent){Pparent->_left = subL;}else{Pparent->_right=subL}subL->_parent = Pparent;}subL->_bf = 0;parent->_bf = 0;
}
subL为父节点的左节点,subLR为为父节点左节点的右节点。如果subLR不为空,父节点的左指针链接subLR。找到父节点的父节点(下面称为祖父节点),让subL的右指针链接父节点,父节点的父节点链接subL。让subL节点成为新的父节点,之前的父节点成为了subL的孩子。
左旋
- 在a⼦树中插⼊⼀个新结点,导致a⼦树的⾼度从h变成h+1,不断向上更新平衡因⼦,导致10的平衡因⼦从1变成2,10为根的树左右⾼度差超过1,违反平衡规则。10为根的树右边太⾼了,需要往左边旋转,控制两棵树的平衡。
- 旋转核⼼步骤,因为10 < b⼦树的值 < 15,将b变成10的右⼦树,10变成15的左⼦树,15变成这棵 树新的根,符合搜索树的规则,控制了平衡,同时这棵的⾼度恢复到了插⼊之前的h+2,符合旋转原则。如果插⼊之前10整棵树的⼀个局部⼦树,旋转后不会再影响上⼀层,插⼊结束了。
void RtateL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL){subRL->_parent = parent;}Node* Pparent = parent->_parent;subR->_left = parent;parent->_parent = subR;if (parent == _root){subR = _root;subR->_parent = nullptr;}else{if (Pparent->_left == parent){Pparent->_left = subR;}else{Pparent->_right = subR;}subR->_parent = Pparent;}subR->_bf = 0;parent->_bf = 0;
}
步骤与右旋相同,只是换了一个方向。
左右双旋
左边⾼时,如果插⼊位置不是在a⼦树,⽽是插⼊在b⼦树,b⼦树⾼度从h变成h+1,引发旋转,右单旋⽆法解决问题,右单旋后,我们的树依旧不平衡。右单旋解决的纯粹的左边⾼,但是插⼊在b⼦树中,10为跟的⼦树不再是单纯的左边⾼,对于10是左边⾼,但是对于5是右边⾼,需要⽤两次旋转才能解决,以5为旋转点进⾏⼀个左单旋,以10为旋转点进⾏⼀个右单旋,这棵树这棵树就平衡了。
跟左右双旋类似,下⾯我们将a/b/c⼦树抽象为⾼度h的AVL⼦树进⾏分析,另外我们需要把b⼦树的
细节进⼀步展开为12和左⼦树⾼度为h-1的e和f⼦树,因为我们要对b的⽗亲15为旋转点进⾏右单
旋,右单旋需要动b树中的右⼦树。b⼦树中新增结点的位置不同,平衡因⼦更新的细节也不同,通
过观察12的平衡因⼦不同,这⾥我们要分三个场景讨论。
• 场景1:h >= 1时,新增结点插⼊在e⼦树,e⼦树⾼度从h-1变为h并不断更新12->15->10平衡因
⼦,引发旋转,其中12的平衡因⼦为-1,旋转后10和12平衡因⼦为0,15平衡因⼦为1。
• 场景2:h >= 1时,新增结点插⼊在f⼦树,f⼦树⾼度从h-1变为h并不断更新12->15->10平衡因⼦,引发旋转,其中12的平衡因⼦为1,旋转后15和12平衡因⼦为0,10平衡因⼦为-1。
• 场景3:h == 0时,a/b/c都是空树,b⾃⼰就是⼀个新增结点,不断更新15->10平衡因⼦,引发旋
转,其中12的平衡因⼦为0,旋转后10和12和15平衡因⼦均为0。
if (parent->_bf == -2 && cur->_bf == -1)
{RotateR(parent);
}
else if (parent->_bf == 2 && cur->_bf == 1)
{RotateL(parent);
}
else if (parent->_bf == -2 && cur->_bf == 1)
{RotateLR(parent);
}
else if (parent->_bf == 2 && cur->_bf == -1)
{RotateRL(parent);
}
void RtateLR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);if (bf == 0){subL->_bf = 0;subLR->_bf = 0;parent->_bf = 0;}else if (bf == -1){subL->_bf = 0;subLR->_bf = 0;parent->_bf = 1;}else if (bf == 1){subL->_bf = -1;subLR->_bf = 0;parent->_bf = 0;}else{assert(false);}}//右左双旋void RtateLR(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent);if (bf == 0){subL->_bf = 0;subLR->_bf = 0;parent->_bf = 0;}else if (bf == -1){subL->_bf = 0;subLR->_bf = 0;parent->_bf = -1;}else if (bf == 1){subL->_bf = 1;subLR->_bf = 0;parent->_bf = 0;}else{assert(false);}}
private:Node* _root = nullptr;
};
AVL树的实现的代码
#include<iostream>
using namespace std;template<class K,class V>
struct AVLTreeNode
{pair<K, V> _kv;AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _parent;int _bf;AVLTreeNode(const pair<K,V>& kv)_kv(kv),_left(nullptr),_right(nullptr),_parent(nullptr),_bf(0){}
};template<class K,class V>
class AVLTree
{typedef AVLTreeNode Node;
public:bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new node(kv);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else{return false;}}cur = new Node(kv);if (parent->_kv.first > kv.first){parent->_left = cur;}else{parent->_right = cur;}cur->_parent = parent;//控制平衡因子while (parent){if (cur == parent->_left){parent->_bf--;}else{parent->_bf++;}if (parent->_bf == 1 || parent->_bf == -1){parent = cur;parent->_parent = parent;}else if(parent->_bf == 2 || parent->_bf ==-2){if (parent->_bf == -2 && cur->_bf == -1){RotateR(parent);}else if (parent->_bf == 2 && cur->_bf == 1){RotateL(parent);}else if (parent->_bf == -2 && cur->_bf == 1){RotateLR(parent);}else if (parent->_bf == 2 && cur->_bf == -1){RotateRL(parent);}else{assert(false);}break;}else if{return false;}}}//右旋void RtateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR){subLR->_parent = parent;}Node* Pparent=parent->_parent;subL->_right = parent;parent->_parent = subL;if (parent==_root){_root = subL;subL->_parent = nullptr;}else{if (Pparent->_left == parent){Pparent->_left = subL;}else{Pparent->_right=subL}subL->_parent = Pparent;}subL->_bf = 0;parent->_bf = 0; }//左旋void RtateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL){subRL->_parent = parent;}Node* Pparent = parent->_parent;subR->_left = parent;parent->_parent = subR;if (parent == _root){subR = _root;subR->_parent = nullptr;}else{if (Pparent->_left == parent){Pparent->_left = subR;}else{Pparent->_right = subR;}subR->_parent = Pparent;}subR->_bf = 0;parent->_bf = 0;}//左右双旋void RtateLR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);if (bf == 0){subL->_bf = 0;subLR->_bf = 0;parent->_bf = 0;}else if (bf == -1){subL->_bf = 0;subLR->_bf = 0;parent->_bf = 1;}else if (bf == 1){subL->_bf = -1;subLR->_bf = 0;parent->_bf = 0;}else{assert(false);}}//右左双旋void RtateLR(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent);if (bf == 0){subL->_bf = 0;subLR->_bf = 0;parent->_bf = 0;}else if (bf == -1){subL->_bf = 0;subLR->_bf = 0;parent->_bf = -1;}else if (bf == 1){subL->_bf = 1;subLR->_bf = 0;parent->_bf = 0;}else{assert(false);}}
private:Node* _root = nullptr;
};