实战攻略 | ClickHouse优化之FINAL查询加速

【本文作者:擎创科技资深研发 禹鼎侯】

查询时为什么要加FINAL

我们在使用ClickHouse存储数据时,通常会有一些去重的需求,这时候我们可以使用ReplacingMergeTree引擎。这个引擎允许你存储重复数据,但是在merge的时候会根据order by的字段进行去重。

它的去重逻辑是使用新数据覆盖旧数据。

但是很多时候,merge并不是实时的,他可能会在数据插入后几分钟甚至十几分钟后才会进行,而我们对数据的查询却往往却是实时的。这个时候就必然出现一个问题:

那些还没有来得及merge的数据,查询出来会有重复。这与我们所期望的效果是背道而驰的。

事实上,即便是merge发生了,我们也不能保证数据一定没有重复。我们举个简单的例子:

如上图所示:p1~p4是四个原始part,发生合并之后数据进行了去重,最终合并成了p1_4, 对id去重之后有四个值,分别为1,2,3,4, 假设此时又有一个新part p5插入,此时去查询仍然能搜到两条id为2和3数据。

因此,即使发生了合并,我们也不能保证数据就一定是唯一的。

ClickHouse为了解决这个问题,提供了FINAL语法,从字面意义上理解,就是返回merge最终态的数据结果。它的效果与OPTIMIZE FINAL 是一致的。

不过,SELECT FINAL仅是在读时合并,并不会实际将底层数据合并,而OPTIMIZE FINAL则是实实在在的发生合并,这是二者的本质的区别。

FINAL查询会有什么问题

那么大家肯定也已经发现了。这种加了FINAL的查询,性能会有很大的问题!

因为FINAL相当于在查询时执行一次OPTIMIZE FINAL,而这个操作本质上是将同一个partition内的数据合并成一个part。在数据量不大的情况下还好,这个操作还能很快返回,如果数据集比较大,比如单个分区的数据已经达到了上千万级,甚至上亿级,那么一次FINAL可真是要了亲命了。

为了让大家直观的感受到这种性能差距,我们来举个例子。

我们使用ClickHouse官方提供的压测数据来进行举例:

https://clickhouse.com/docs/en/getting-started/example-datasets/opensky#validate-data

建表语句如下:

CREATE TABLE opensky(    `callsign` String,    `number` String,    `icao24` String,    `registration` String,    `typecode` String,    `origin` String,    `destination` String,    `firstseen` DateTime,    `lastseen` DateTime,    `day` DateTime,    `latitude_1` Float64,    `longitude_1` Float64,    `altitude_1` Float64,    `latitude_2` Float64,    `longitude_2` Float64,    `altitude_2` Float64)ENGINE = ReplacingMergeTreePARTITION BY toYYYYMMDD(day)ORDER BY (origin, destination, callsign)

我们将数据导入两遍,这样就一定会得到重复的数据:

ck94 :) select count() from opensky;
SELECT count()FROM opensky
Query id: 0d65affc-873e-4847-9ee0-ae749b091bd1
┌───count()─┐│ 127132244 │└───────────┘
1 row in set. Elapsed: 0.007 sec.

接下来我们来执行一个查询语句:

ck94 :) select avg(altitude_1) from opensky where day >= '2020-10-01 00:00:00' and typecode = 'B737';
SELECT avg(altitude_1)FROM openskyWHERE (day >= '2020-10-01 00:00:00') AND (typecode = 'B737')
Query id: bcb16bd6-91fc-4993-a4de-87e1731d7760
┌────avg(altitude_1)─┐│ 1458.7475907858743 │└────────────────────┘
1 row in set. Elapsed: 0.186 sec. Processed 34.74 million rows, 812.04 MB (186.88 million rows/s., 4.37 GB/s.)Peak memory usage: 14.39 MiB.

可以看到,当我们不使用final时,上面这个sql仅仅使用了0.186秒就返回了结果。

接下来我们看看加了final的效果:

ck94 :) select avg(altitude_1) from opensky final where day >= '2020-10-01 00:00:00' and typecode = 'B737';
SELECT avg(altitude_1)FROM openskyFINALWHERE (day >= '2020-10-01 00:00:00') AND (typecode = 'B737')
Query id: 63f760a6-9bca-4a40-a7b3-237eacae356a
┌────avg(altitude_1)─┐│ 1336.4280164372838 │└────────────────────┘
1 row in set. Elapsed: 12.784 sec. Processed 48.60 million rows, 3.06 GB (3.80 million rows/s., 239.37 MB/s.)Peak memory usage: 4.16 GiB.

上面这个SQL足足耗费了12.784秒!这可是近70倍的差距,我们当前的数据集还不算大,如果数据集再大一点,那么这个查询性能慢的问题将无限扩大化,最终影响到生产使用。

这让老夫如何是好

那么,这个问题如此明显,有没有什么好的优化手段呢?

自然是有的。

接下来就来介绍两种方法来做final查询的优化。

优化手段1:使用PREWHERE

所谓PREWHERE,就是在查询之前,先将数据过滤掉一部分,这样,目标数据集的规模小了,执行FINAL自然会快了。

我们使用EXPLAIN  SYNTAX 执行计划来看一下为啥第一条不加FINAL的SQL快得离谱:

EXPLAIN SYNTAXSELECT avg(altitude_1)FROM openskyWHERE (day >= '2020-10-01 00:00:00') AND (typecode = 'B737')
Query id: 046a721e-7690-4d0b-9457-20e825d0e152
┌─explain─────────────────────────────────────────────────────────┐│ SELECT avg(altitude_1)                                          ││ FROM opensky                                                    ││ PREWHERE (day >= '2020-10-01 00:00:00') AND (typecode = 'B737') │└─────────────────────────────────────────────────────────────────┘
3 rows in set. Elapsed: 0.003 sec. 

可以看到,上面这条SQL,实际上clickhouse优化器已经对其进行改写成了PREWHERE。

我们再看看加了FINAL的执行计划:

EXPLAIN SYNTAXSELECT avg(altitude_1)FROM openskyFINALWHERE (day >= '2020-10-01 00:00:00') AND (typecode = 'B737')
Query id: c4ae0a63-7a55-4216-815a-25ff44ee538e
┌─explain──────────────────────────────────────────────────────┐│ SELECT avg(altitude_1)                                       ││ FROM opensky                                                 ││ FINAL                                                        ││ WHERE (day >= '2020-10-01 00:00:00') AND (typecode = 'B737') │└──────────────────────────────────────────────────────────────┘

那就离了个大谱了!

为神马就加了个FINAL,他就不能使用PREWHERE优化了?

按照官方的说法: 如果查询条件里带有主键字段,clickhouse会默认会使用PREWHERE进行优化,可以提前减少数据集的大小,一来避免过多内存造成OOM,二来自然是可以加速查询了。

然而十分悲催的是,这个优化对加了FINAL的查询不会生效。

那么我们怎么能让它使用到PREWHERE优化呢?

这里提供两种方法:

一种是显式指定。

ck94 :) select avg(altitude_1) from opensky final prewhere day >= '2020-10-01 00:00:00' and typecode = 'B737';
SELECT avg(altitude_1)FROM openskyFINALPREWHERE (day >= '2020-10-01 00:00:00') AND (typecode = 'B737')
Query id: ce72c7a9-38a1-4ae8-957e-d951e0dd9d0b
┌────avg(altitude_1)─┐│ 1424.1051732278174 │└────────────────────┘
1 row in set. Elapsed: 1.429 sec. Processed 48.60 million rows, 3.06 GB (34.01 million rows/s., 2.14 GB/s.)Peak memory usage: 1.19 GiB.

可以看到,我们改成显式使用PREWHERE之后,查询性能立马减少到了1.429秒,差不多有9倍左右的提升,可见这个提升是巨大的。

第二是利用子查询命中PREWHERE。

那么,有木有什么办法不显式指定PREWHERE,但是让其有这个优化呢?而且我们并不能保证所有的条件都会带上主键索引。

前面介绍过,当查询条件带主键,且不加final的时候,clickhouse会默认使用PREWHERE进行优化,那么我们是不是可以先用子查询命中PREWHERE,然后再final呢?

我们将SQL改成如下样子:

ck94 :) select avg(altitude_1) from opensky where (origin, destination, callsign) in (select origin, destination, callsign from opensky where day >= '2020-10-01 00:00:00' and typecode = 'B737') and day >= '2020-10-01 00:00:00' and typecode = 'B737';
SELECT avg(altitude_1)FROM openskyWHERE ((origin, destination, callsign) IN (    SELECT        origin,        destination,        callsign    FROM opensky    WHERE (day >= '2020-10-01 00:00:00') AND (typecode = 'B737'))) AND (day >= '2020-10-01 00:00:00') AND (typecode = 'B737')
Query id: 61ae0590-de1a-44b1-866f-0c54a919c762
┌────avg(altitude_1)─┐│ 1458.7475907858748 │└────────────────────┘
1 row in set. Elapsed: 0.768 sec. Processed 69.47 million rows, 4.09 GB (90.43 million rows/s., 5.32 GB/s.)Peak memory usage: 69.15 MiB.

耗时降到了0.768秒,这已经非常接近不加final的裸查询了。牛逼class!

优化手段2:禁用final查询跨分区merge

ClickHouse本身是允许跨分区进行数据替换的,这无疑复杂化了FINAL查询的逻辑。但事实上,只要我们的数据分区合理,这种情况完全可以规避掉。这时候我们可以使用do_not_merge_across_partitions_select_final=1这个配置来禁用跨final查询时分区合并。这意味着clickhouse仅在本分区内进行merge去重。

我们来看看效果:

ck94 :) select avg(altitude_1) from opensky final where day >= '2020-10-01 00:00:00' and typecode = 'B737' SETTINGS do_not_merge_across_partitions_select_final=1;
SELECT avg(altitude_1)FROM openskyFINALWHERE (day >= '2020-10-01 00:00:00') AND (typecode = 'B737')SETTINGS do_not_merge_across_partitions_select_final = 1
Query id: 41aa4fc9-5933-43e1-86bf-a374eab15dd9
┌────avg(altitude_1)─┐│ 1458.6043678101414 │└────────────────────┘
1 row in set. Elapsed: 0.732 sec. Processed 34.74 million rows, 2.18 GB (47.44 million rows/s., 2.98 GB/s.)Peak memory usage: 2.86 GiB.
仅耗时0.732秒,同样牛的一批。

事实上,我们建议在部署集群时,将这个配置作为默认配置进行设置,在知名项目clickhouse-operator 中,这个配置就是默认打开的。

那么,综合上面两种优化手段,这就是最终形态了:

ck94 :) select avg(altitude_1) from opensky where (origin, destination, callsign) in (select origin, destination, callsign from opensky where day >= '2020-10-01 00:00:00' and typecode = 'B737') and day >= '2020-10-01 00:00:00' and typecode = 'B737' SETTINGS do_not_merge_across_partitions_select_final = 1;
SELECT avg(altitude_1)FROM openskyWHERE ((origin, destination, callsign) IN (    SELECT        origin,        destination,        callsign    FROM opensky    WHERE (day >= '2020-10-01 00:00:00') AND (typecode = 'B737'))) AND (day >= '2020-10-01 00:00:00') AND (typecode = 'B737')SETTINGS do_not_merge_across_partitions_select_final = 1
Query id: 298c3d92-67da-4379-8e1d-43f85c99cc2c
┌────avg(altitude_1)─┐│ 1458.7475907858745 │└────────────────────┘
1 row in set. Elapsed: 0.678 sec. Processed 69.47 million rows, 4.09 GB (102.45 million rows/s., 6.03 GB/s.)Peak memory usage: 69.89 MiB.

虽然还是比不加final的要慢一丢丢,但总体上已经到了可以接受的程度了。

———— THE END ————

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/4259.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

albert模型实现微信公众号虚假新闻分类

项目源码获取方式见文章末尾! 600多个深度学习项目资料,快来加入社群一起学习吧。 《------往期经典推荐------》 项目名称 1.【基于CNN-RNN的影像报告生成】 2.【卫星图像道路检测DeepLabV3Plus模型】 3.【GAN模型实现二次元头像生成】 4.【CNN模型实现…

nginx系列--(一)--调试环境搭建

辅助脚本: #!/bin/bash mkdir -p $(pwd)/nginxhome # 生成 Makefile,--prefix need a absolute path --with-stream表示要包括stream模块 auto/configure --prefix$(pwd)/nginxhome --with-stream # lsof -i tcp:10086 && fuser -k 10086/tcp ||true # 定…

Flutter开发者必备面试问题与答案06

Flutter开发者必备面试问题与答案06 视频 https://youtu.be/a1NAfSQrpIg https://www.bilibili.com/video/BV1g71KYREBN/ 前言 原文 Flutter 完整面试问题及答案06 本文是 flutter 面试问题的第六讲。 正文 51. 定义什么是 App State ? 在 Flutter 中&#xf…

ElasticSearch学习篇16_《检索技术核心20讲》进阶篇之空间检索

背景 学习极客实践课程《检索技术核心20讲》https://time.geekbang.org/column/article/215243,文档形式记录笔记。 相关问题: 查询范围固定的需求 直接计算两点之间距离区域二进制编码GeoHash编码 查询范围不固定的需求 GeoHash编码索引结构设计 基于…

element-plus按需引入报错IconsResolver is not a function

官网文档:element-plus-best-practices/vite.config.ts at db2dfc983ccda5570033a0ac608a1bd9d9a7f658 sxzz/element-plus-best-practices GitHubElement Plus Best Practices 最佳实践. Contribute to sxzz/element-plus-best-practices development by creating…

恢复Ubuntu+Windows10双系统安装前状态及分区还原详细步骤

1、恢复到安装 Ubuntu 之前的状态,先看看系统属性 2、选择 运行 3、 输入 msinfo32 回车 4、注意查看 BIOS 模式这一栏,UEFI,这里我们以UEFI系统为例 5、下来就可以开始进行 Ubuntu 的移除操作了 6、从Windows打开网页搜索磁盘精灵&#xff0…

SQL实战训练之,力扣:1843. 可疑银行账户

目录 一、力扣原题链接 二、题目描述 三、建表语句 四、题目分析 五、SQL解答 六、最终答案 七、验证 八、知识点 一、力扣原题链接 1843. 可疑银行账户 二、题目描述 表: Accounts ---------------------- | Column Name | Type | ---------------------- | acco…

酒店管理系统|基于java和小程序的酒店管理小程序系统设计与实现(源码+数据库+文档)

酒店管理小程序系统 目录 基于java和小程序的酒店管理小程序系统设计与实现 一、前言 二、系统设计 三、系统功能设计 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取: 博主介绍:✌️大厂码农|毕设布道师…

Template Method(模板方法)

1)意图 定义一个操作中的算法骨架,而将一些步骤延迟到子类中。Template Method 使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。 2)结构 模板方法模式的结构图如图7-47 所示。 其中: AbstractClass(抽象类) 定义抽象的原语操作,具体…

TrafficPeak | TB级云原生数据平台释放全新洞察力

Hydrolix是一款专为TB级工作负载设计的云原生数据平台,旨在消除现有解决方案中广泛存在的数据焦虑、技术障碍和限制等问题,为用户提供不受限制的实时可观察性。 最近,Hydrolix与Akamai联手,基于Akamai Connected Cloud提供完全托管…

C++ | Leetcode C++题解之第540题有序数组中的单一元素

题目&#xff1a; 题解&#xff1a; class Solution { public:int singleNonDuplicate(vector<int>& nums) {int low 0, high nums.size() - 1;while (low < high) {int mid (high - low) / 2 low;mid - mid & 1;if (nums[mid] nums[mid 1]) {low mid…

IT架构管理

目录 总则 IT架构管理目的 明确组织与职责 IT架构管理旨在桥接技术实施与业务需求之间的鸿沟&#xff0c;通过深入理解业务战略和技术能力&#xff0c;推动技术创新以支持业务增长&#xff0c;实现技术投资的最大价值。 设定目标与范围 IT架构管理的首要目的是确立清晰的组织…

vue2中使用vue-awesome-swiper实现轮播

swiper官方文档&#xff1a;Swiper中文网-轮播图幻灯片js插件,H5页面前端开发 1.安装 注意&#xff1a;swiper和vue-awesome-swiper的版本一定一定一定要相对应&#xff0c;版本对应如下&#xff1a; Swiper 5-6 vue-awesome-swiper4.1.1(vue2) Swiper 4.x vue-awesome-swi…

机器学习—神经网络中的层

大多数现代神经网络的基本组成部分是一层神经元&#xff0c;本篇文章中&#xff0c;你将学会如何构造一层神经元&#xff0c;一旦你把它放下&#xff0c;你就能把那些积木&#xff0c;把它们放在一起形成一个大的神经网络。 一层神经元是如何工作的&#xff1f; 下面是我们从…

51单片机教程(四)- 点亮LED灯

1、项目分析 让输入/输出口的P1.0连接一盏LED灯进行点亮。 2、技术准备 1 LED组成 ​ 说明 二极管有 P型 和 N型材料构成&#xff0c;通常是&#xff1a;硅/锗 掺杂其他元素&#xff08;硼、磷等&#xff09; 电子是带负电的&#xff0c;是负电荷的载体&#xff0c;电子流…

青训1_1105_03 最小替换子串长度

.md 文章目录 请添加图片描述一 问题描述测试样例示例 二 思路个人思路(ERROR)思路&#xff08;right&#xff09; !!解题思路 详细答案三、理解1、 理解嵌套循环:也就是连续子串的所有可能性位置-看懂了2、问题又来了&#xff0c;即使确定了能得到不同长度连续子串&#xff0c…

222页PPT集团公司供应链管理SOP计划管理流程规划

S&OP&#xff08;Sales & Operations Planning&#xff09;&#xff0c;即销售与运营计划&#xff0c;也被称为产销协同&#xff0c;是一种综合性的企业管理方法。以下是对S&OP计划管理流程规划的详细内容&#xff1a; 一、S&OP的基本概念与目的 S&OP是一…

第三十五篇:HTTP报文格式,HTTP系列二

HTTP 是超⽂本传输协议&#xff0c;也就是HyperText Transfer Protocol。 前面我们讲到第三章中网络协议的定义&#xff0c;网络协议的定义&#xff1a;网络协议是通信计算机双方必须共同遵从的一组约定。就像两个人要进行交流&#xff0c;如果不制定一套约定&#xff0c;一方…

华夏教育集团《梦回延安》全国巡演河南站纪实

传承红色精神&#xff0c;推动中国式家校共育。日前&#xff0c;由华夏教育集团太阳谷华夏学校携手河南少年先锋学校、世纪先锋学校联合推出的大型红色舞台剧《梦回延安》在河南省人民会堂精彩亮相。 河南是中华文明的发祥地之一&#xff0c;此次《梦回延安》舞台剧首次走出辽宁…

Idea如何推送项目到gitee

第一步&#xff1a;先在你的gitee创建一个仓库 第二步&#xff1a; 点击推送 点击定义远程&#xff0c;将URL换成你仓库的&#xff0c;填好你的用户名和密码 可以看到已经推送到仓库了