当前位置: 首页 > news >正文

1.1 点云数据获取方式——引言

图1-1-1点云建筑场景图

        点云数据是指能够描述外部场景、对象表面的三维空间位置,并具有相关属性的点集,其每个离散点通常包括三维空间位置(x,y,z)以及强度、颜色等属性信息。大量分布的离散点集能够清晰而直接地描绘场景、对象的3D形状,通过不同属性进行点云赋色渲染从而提升其3D可视化效果。如下列图集所示:

图1-1-2地形图(高程赋色)

图1-1-3道路点云图(强度赋色)

图1-1-4野外电力线点云图(RGB赋色)

        而点数据获取通常如下几项手段①基于主动扫描设备获取比如激光雷达ToF相机结构光相机②基于被动式手段获取例如基于相机几何原理生成重建利用双目立体几何双目相机以及基于相机视觉slam获取3D结果

http://www.xdnf.cn/news/207523.html

相关文章:

  • Weka通过10天的内存指标数据计算内存指标动态阈值
  • 判断子序列
  • 问答:C++如何通过自定义实现移动构造函数和移动赋值运算符来实现rust的唯一所有权?
  • AI Agent开源技术栈
  • RabbitMQ 启动报错 “crypto.app“ 的解决方法
  • 项目三 - 任务2:创建笔记本电脑类(一爹多叔)
  • MySQL--数据引擎详解
  • gem5-gpu 安装过程碰到的问题记录 关于使用 Ruby + Garnet
  • Qt/C++开发监控GB28181系统/获取设备信息/设备配置参数/通道信息/设备状态
  • 当 AI 成为 “数字新物种”:人类职业的重构与进化
  • python:sklearn 决策树(Decision Tree)
  • 从 0 到 1:ComfyUI AI 工作流抠图构建全实践
  • Linux[配置vim]
  • 通信设备制造数字化转型中的创新模式与实践探索
  • 首页数据展示
  • 并发设计模式实战系列(9):消息传递(Message Passing)
  • Redis性能优化终极指南:从原理到实战的深度调优策略
  • 超越单体:进入微服务世界与Spring Cloud概述
  • Java Stream流
  • 【Fifty Project - D20】
  • 推荐系统实验指标置信度:p值核心原理与工程应用指南
  • TA学习之路——2.3图形的HLSL常用函数详解
  • 万界星空科技QMS质量管理系统几大核心功能详解
  • 【Linux】第十五章 调度未来任务
  • LeetCode - 02.02.返回倒数第 k 个节点
  • 深挖Java基础之:认识Java(创立空间/先导:Java认识)
  • javascript<——>进阶
  • 嵌入式开发面试常见编程题解析:pthread_join 与 pthread_detach 详解
  • 【动手学大模型开发】使用 LLM API:智谱 GLM
  • Java练习6