【模型级联】YOLO-World与SAM2通过文本实现指定目标的零样本分割

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统】40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统】
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统】42.【基于YOLOv8深度学习的无人机视角地面物体检测系统】
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统】44.【基于YOLOv8深度学习的野外火焰烟雾检测系统】
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统】46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统】
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统】48.【基于深度学习的车辆检测追踪与流量计数系统】
49.【基于深度学习的行人检测追踪与双向流量计数系统】50.【基于深度学习的反光衣检测与预警系统】
51.【基于深度学习的危险区域人员闯入检测与报警系统】52.【基于深度学习的高密度人脸智能检测与统计系统】
53.【基于深度学习的CT扫描图像肾结石智能检测系统】54.【基于深度学习的水果智能检测系统】
55.【基于深度学习的水果质量好坏智能检测系统】56.【基于深度学习的蔬菜目标检测与识别系统】
57.【基于深度学习的非机动车驾驶员头盔检测系统】58.【太基于深度学习的阳能电池板检测与分析系统】
59.【基于深度学习的工业螺栓螺母检测】60.【基于深度学习的金属焊缝缺陷检测系统】
61.【基于深度学习的链条缺陷检测与识别系统】62.【基于深度学习的交通信号灯检测识别】
63.【基于深度学习的草莓成熟度检测与识别系统】64.【基于深度学习的水下海生物检测识别系统】
65.【基于深度学习的道路交通事故检测识别系统】66.【基于深度学习的安检X光危险品检测与识别系统】
67.【基于深度学习的农作物类别检测与识别系统】68.【基于深度学习的危险驾驶行为检测识别系统】
69.【基于深度学习的维修工具检测识别系统】70.【基于深度学习的维修工具检测识别系统】
71.【基于深度学习的建筑墙面损伤检测系统】72.【基于深度学习的煤矿传送带异物检测系统】
73.【基于深度学习的老鼠智能检测系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

目录

  • 一、什么是模型级联?
  • 二、YOLO-World模型介绍
  • 三、SAM2模型介绍
  • 四、YOLO-world与SAM2级联
  • 五、总结

一、什么是模型级联?

在这里插入图片描述

模型级联是指将多个模型按照一定的顺序组合起来,以实现更复杂的功能。在计算机视觉领域,模型级联通常用于提高模型的性能,如提高检测精度、降低误报率等。通过将多个模型的优势结合起来,模型级联可以更好地应对各种复杂场景。如上图中的ModelA、ModelB和ModelC串联执行任务。

本文将介绍一种将零样本目标检测模型YOLO-World与分割一切模型SAM2结合在一起,以实现零样本的图像或者视频的目标分割任务。

二、YOLO-World模型介绍

YOLO-World是一个用于对象检测的零样本检测模型,可以根据输入的文本,检测和定位图像中的对象,而无需事先对特定对象类进行训练。
如下图:给定文本输入(即,类),该模型准确预测每个给定输入的边界框!🍾
左图给出指定身体部位的词汇,YOLO-World即可精准检测,右图给定*gymnast*[体操运动员],可以检测到图片中的人物。

在这里插入图片描述
我们只需向整个系统提供的唯一输入是YOLO-World词汇表的类定义,在本例中是“gymnast”。这个词足以让YOLO-World为SAM 2提供边界框坐标。【可以指定任意词汇目标进行检测】

YOLO-world模型具有以下特点:
高效性:YOLO-world模型采用端到端的设计,可以快速处理图像,实现实时目标检测。
准确性:通过训练大量标注数据,YOLO-world模型可以准确地识别和定位图像中的目标。
灵活性:YOLO-world模型可以适应不同的场景和目标,具有很好的泛化能力。

三、SAM2模型介绍

SAM2(Segment Anything Model 2)是一种基于深度学习的图像分割模型,它通过训练大量标注数据,学习如何分割图像中的目标。SAM2模型具有以下特点:
零样本分割:SAM2模型可以在没有标注数据的情况下,实现指定目标的分割。
高效性:SAM2模型采用轻量级的设计,可以快速处理图像,实现实时分割。
准确性:通过训练大量标注数据,SAM2模型可以准确地分割图像中的目标。

四、YOLO-world与SAM2级联

我们将YOLO-World与SAM2进行级联,可进行任意图像或者视频任意目标的检测分割。只需要输入需要检测的对象文本即可。

YOLO-World通过文本提示进行任意目标检测,为SAM 2提供边界框以进行图像或者视频的分割。如下图所示:
在这里插入图片描述

将YOLO-world与SAM2模型结合,可以实现以下优势:
提高检测精度:YOLO-world模型可以准确地检测图像中的目标,而SAM2模型可以进一步分割这些目标,从而提高检测精度。
降低误报率:通过将YOLO-world模型检测到的目标进行分割,可以降低误报率,提高模型的鲁棒性。
提高分割效率:YOLO-world模型可以快速检测图像中的目标,而SAM2模型可以快速分割这些目标,从而提高分割效率。
适应不同场景:YOLO-world模型和SAM2模型可以适应不同的场景和目标,具有很好的泛化能力。

五、总结

YOLO-world与SAM2模型的结合,可以实现指定目标的零样本分割。通过将YOLO-world模型检测到的目标进行分割,可以提高检测精度、降低误报率、提高分割效率,并适应不同场景。这种模型级联的方法,为计算机视觉领域的研究和应用提供了新的思路。


在这里插入图片描述

好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/20111.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

Postman之变量操作

系列文章目录 Postman之变量操作 1.pm.globals全局变量2.pm.environment环境变量3.pm.collectionVariables集合变量4.pm.variables5.提取数据-设置变量-进行参数化串联使用 postman中分为全局变量、环境变量、集合变量、和普通变量 分别使用pm.globals、pm.environment、pm.co…

linux 常用命令指南(存储分区、存储挂载、docker迁移)

前言:由于目前机器存储空间不够,所以‘斥巨资’加了一块2T的机械硬盘,下面是对linux扩容的一系列操作,包含了磁盘空间的创建、删除;存储挂载;docker迁移;anaconda3迁移等。 一、存储分区 1.1 …

python读取Oracle库并生成API返回Json格式

一、安装必要的库 首先,确保已经安装了以下库: 有网模式 pip install flask pip install gevent pi install cx_Oracle离线模式: 下载地址:https://pypi.org/simple/flask/ # a. Flask Werkzeug-1.0.1-py2.py3-none-any.whl J…

Nature子刊 | 单细胞测序打开发育系统溯源新视角

神经系统是人体最为复杂且最为重要的器官之一。深入理解神经发育对于神经科学研究和再生医学具有举足轻重的作用。但神经元多样性的起源仍是一个亟待解决的难题。日益发展的单细胞测序技术让研究人员们有机会从细胞的异质性入手,对不同细胞类型之间的关联和分化路径…

5G CPE与4G CPE的主要区别有哪些

什么是CPE? CPE是Customer Premise Equipment(客户前置设备)的缩写,也可称为Customer-side Equipment、End-user Equipment或On-premises Equipment。CPE通常指的是位于用户或客户处的网络设备或终端设备,用于连接用户…

新增道路查询最短路径

一、问题描述 给你一个整数 n 和一个二维整数数组 queries。 有 n 个城市&#xff0c;编号从 0 到 n - 1。初始时&#xff0c;每个城市 i 都有一条单向道路通往城市 i 1&#xff08; 0 < i < n - 1&#xff09;。 queries[i] [ui, vi] 表示新建一条从城市 ui 到城市…

【数据结构】链表解析与实战运用(1.8w字超详细解析)

目录 引言 链表概念及结构 链表的优缺点 链表的分类 1.单向或者双向 2.带头或者不带头 3.带循环或者非循环 单链表接口函数的实现 接口函数一览 创建空节点&打印链表 尾部插入 头部插入 尾部删除 头部删除 查找 在pos位置之后插入节点 在pos位置之前插入节…

Python练习31

Python日常练习 题目&#xff1a; 分别输入两个整数以及一个加减乘除中的算术运算符&#xff0c;输出运算结果&#xff0c; 若输入其它运算符&#xff0c;则退出程序; 例如&#xff1a; 输出格式如下 【输入一个整数&#xff1a;】1 【输入另一个整数&#xff1a;】2 …

uniapp 自定义加载组件,全屏加载,局部加载 (微信小程序)

效果图 全屏加载 页面加载使用 局部加载 列表加载里面使用 使用gif html <template><view><view class"" v-if"typeFullScreen"><view class"loading" v-if"show"><view class""><i…

Mac 修改默认jdk版本

当前会话生效 这里演示将 Java 17 版本降低到 Java 8 查看已安装的 Java 版本&#xff1a; 在终端&#xff08;Terminal&#xff09;中运行以下命令&#xff0c;查看已安装的 Java 版本列表 /usr/libexec/java_home -V设置默认 Java 版本&#xff1a; 找到 Java 8 的安装路…

动态规划-最长公共子序列

题目 最长公共子序列 给定两个字符串 text1 和 text2&#xff0c;返回这两个字符串的最长公共子序列的长度。 一个字符串的 子序列 是指这样一个新的字符串&#xff1a;它是由原字符串在不改变字符的相对顺序的情况下删除某些字符&#xff08;也可以不删除任何字符&#xff0…

nvm安装node遇到的若干问题(vscode找不到npm文件、环境变量配置混乱、npm安装包到D盘)

问题一&#xff1a;安装完nvm后需要做哪些环境变量的配置&#xff1f; 1.打开nvm文件夹下的setting文件&#xff0c;设置nvm路径和安装node路径&#xff0c;并添加镜像。 root: D:\software\nvm-node\nvm path: D:\software\nvm-node\nodejs node_mirror: https://npmmirror.c…

Zookeeper的简单使用Centos环境下

目录 前言 一、ZOokeeper是什么&#xff1f; 二、安装Zookeeper 1.进入官网下载 2.解压到服务器 3.配置文件 三.使用Zookeeper 3.1启动相关指令 3.2其他指令 3.3ACL权限 总结 前言 记录下安装zookeeper的一次经历 一、ZOokeeper是什么&#xff1f; ZooKeeper是一…

疫情中的图书馆管理:Spring Boot系统设计

摘要 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理信息系统的实施在技术上已逐步成熟。本文介绍了疫情下图书馆管理系统的开发全过程。通过分析疫情下图书馆管理系统管理的不足&#xff0c;创建了一个计算机管理疫情下图书馆管理系统的方案。文章介绍了疫情下图…

Excel数据动态获取与映射

处理代码 动态映射 动态读取 excel 中的数据&#xff0c;并通过 json 配置 指定对应列的值映射到模板中的什么字段上 private void GetFreightFeeByExcel(string filePath) {// 文件名需要以快递公司命名 便于映射查询string fileName Path.GetFileNameWithoutExtension(fi…

网络(TCP)

目录 TCP socket API 详解 bind(): 我们的程序中对myaddr参数是这样初始化的: listen(): accept(): 理解accecpt的返回值: 饭店拉客例子 connect tcp服务器和udp类似的部分代码 把套接字设置为监听状态&#xff08;listen&#xff09; 测试 查看端口号和IP地址&…

了解鱼叉式网络钓鱼攻击的社会工程学元素

一提到网络攻击&#xff0c;你可能会想象一个老练的黑客躲在类似《黑客帝国》的屏幕后面&#xff0c;利用自己的技术实力积极入侵网络。然而&#xff0c;许多攻击的现实情况远比这平凡得多。 一封带有“未送达”等无害主题的简单电子邮件被放在员工的垃圾邮件文件夹中。他们心…

TS流详解

目录 TS流结构 PSI 节目关联表&#xff08;PAT Program Association Table&#xff09; 条件接收表&#xff08;CAT Conditional Access Table&#xff09; 节目映射表&#xff08;PMT Program Map Table&#xff09; 网络信息表&#xff08;NIT Nerwork Information Tabl…

【图像处理识别】数据集合集!

本文将为您介绍经典、热门的数据集&#xff0c;希望对您在选择适合的数据集时有所帮助。 1 CNN-ImageProc-Robotics 机器人 更新时间&#xff1a;2024-07-29 访问地址: GitHub 描述&#xff1a; 通过 CNN 和图像处理进行机器人对象识别项目侧重于集成最先进的深度学习技术和…

C语言--分支循环编程题目

第一道题目&#xff1a; #include <stdio.h>int main() {//分析&#xff1a;//1.连续读取int a 0;int b 0;int c 0;while (scanf("%d %d %d\n", &a, &b, &c) ! EOF){//2.对三角形的判断//a b c 等边三角形 其中两个相等 等腰三角形 其余情…