当前位置: 首页 > news >正文

FPGA-DDS信号发生器

FPGA-DDS信号发生器

DDS基本原理

​ FPGA实现的DDS(直接数字频率合成)波形生成器是一种高效、灵活的数字信号生成技术,广泛应用于通信、雷达和测试设备中。其核心原理是通过数字计算生成特定频率的波形。

​ DDS通过相位累加、查找表(LUT)和数模转换(DAC) 三个步骤生成波形:

  • 相位累加器: 以固定时钟频率 F c l k F_{clk} Fclk运行,每个时钟周期将当前相位值增加一个频率控制字M。相位值决定了波形的瞬时相位;
  • 查找表(LUT): 存储预先计算的波形样本(如正弦波的离散幅度值)。相位累加器的输出作为地址索引,从LUT中读取对应幅值;
  • 数模转换(DAC): 将数字幅值转换为模拟信号(需外部DAC)。若仅需数字输出(如仿真或数字处理),可省略DAC;
  • 其输出频率公式为: F o u t = M 2 N F c l k F_{out}=\frac{M}{2^N}F_{clk} Fout=2NMFclk,其中N为累加器的位数。

ACM9767 DAC模块

​ ACM9767是一个高速双通道DAC模块,每个通道数据分辨率为14位,输出电压为±5V,且转换速率高达125MHz,非常适合信号发生器、数字调制通信等应用。

在这里插入图片描述

​ 其引脚如下图所示,每个通道有14个数据引脚,1个时钟输入(CLK),一个写入使能(WRT),其中写入使能与CLK保持一致即可(根据芯片手册描述,CLK信号的上升沿必须提前或恰好和 WRT 信号的上升沿一起出现)。
在这里插入图片描述

总体设计

​ 每个通道分别通过三个按键控制其生成信号的波形,频率和相位。其中频率的可选范围在1Hz-10MHz,每次按动按钮频率提高十倍。波形分为正弦波、三角波和方波。

​ DDS相关设计分三层。最底层为基本原理层,用三个ROM保存不同波形的信息,根据输入的频率字和相位字,输出一定频率的14位的Data。中间层模块中预设好能够选择的频率和相位,根据输入的频率选择字和相位选择字,得到对应的频率字和相位字,再调用最底层模块得到相应的Data输出。顶层模块例化两个中间层模块作为通道A和B,并例化6个按键,对两个通道的波形、频率和相位进行控制。

ACM9767模块

ACM9767模块为最底层模块,实现DDS信号发生器最底层的原理。主要实现的功能如图所示。其中D/A转换器的功能由外接硬件模块实现。

在这里插入图片描述

波形数据表ROM

​ 首先生成对应波形的LUT,LUT的深度为4096,也就是由4096个数据构成完整的波形,数据的位宽为14位(跟ACM9767的14位分辨率对应),波形用厂商提供的软件生成。如下图所示,生成正弦波形的数据。

在这里插入图片描述
​ 然后创建ROM IP核,将LUT存储到ROM中。

​ 具体步骤为,打开IP Catalog,然后搜索rom,双击Block Memory …

在这里插入图片描述

​ 然后选择存储器类型为单口ROM,并将IP核名字改成rom_sin

在这里插入图片描述
​ 配置数据位宽为14,深度为4096,使能配置为一直使能即可
在这里插入图片描述

​ 最后载入波形数据即可

在这里插入图片描述

按照以上方法生成方波和三角波的波形和ROM

ACM9767.v

​ 需要注意这里相位累加器(Freq_ACC)的位数设为32位,相位控制器的位数为12(因为数据的深度为 4096 = 2 12 4096=2^{12} 4096=212),则输出波形的频率为:
F o u t = M 2 32 ∗ F c l k F_{out}=\frac{M}{2^{32}}*F_{clk} Fout=232MFclk

  • Note: 实际中使用时, F c l k F_{clk} Fclk通过锁相环产生125MHz频率的时钟信号,但仿真文件中始终信号波形为50MHz
module ACM9767(  Clk, Reset_n,Model_Sel[1:0],  // 选择时钟Fword[31:0],      // 频率控制字Pword[11:0],     // 相位控制字Data[13:0]        // 输出数据);input Clk;input Reset_n;input [1:0] Model_Sel;input [31:0] Fword;input [11:0] Pword;output reg [13:0] Data;// 频率控制字同步寄存器reg [31:0] Fword_r;always@(posedge Clk or negedge Reset_n)if(!Reset_n)Fword_r <= 0;elseFword_r <= Fword;// 相位控制字同步寄存器reg [11: 0] Pword_r;always@(posedge Clk or negedge Reset_n)if(!Reset_n)Pword_r <= 0;elsePword_r <= Pword;// 相位累加器reg [31:0] Freq_ACC;always@(posedge Clk or negedge Reset_n)if(!Reset_n)Freq_ACC <= 0;elseFreq_ACC <= Fword_r + Freq_ACC;// 波形数据表地址wire [11:0] Rom_Addr;assign Rom_Addr = Freq_ACC[31:20] + Pword_r;// 三角波wire [13: 0] Data_Tri;rom_triangular rom_triangular_ins(.clka(Clk),.addra(Rom_Addr),.douta(Data_Tri));// 正弦波wire [13: 0] Data_Sin;rom_sin rom_sin_ins(.clka(Clk),.addra(Rom_Addr),.douta(Data_Sin));// 方波wire [13:0] Data_Squ;rom_square rom_square_ins(.clka(Clk),.addra(Rom_Addr),.douta(Data_Squ));// 输出波形选择always@(posedge Clk or negedge Reset_n)if(!Reset_n)Data <= 0;else begincase(Model_Sel)0: Data <= Data_Tri;1: Data <= Data_Sin;2: Data <= Data_Squ;3: Data <= 0;endcaseend
endmodule
ACM9767_tb.v
`timescale 1ns / 1nsmodule ACM9767_tb();reg Clk;reg Reset_n;reg [1:0] Model_Sel;reg [31:0] Fword;reg [11:0] Pword;wire [13:0] Data;ACM9767 ACM9767_ins(.Clk(Clk), .Reset_n(Reset_n),.Model_Sel(Model_Sel),  // 选择时钟.Fword(Fword),      // 频率控制字.Pword(Pword),     // 相位控制字.Data(Data)        // 输出数据);initial Clk = 1;always #10 Clk = !Clk;initial beginReset_n = 0;#201;Reset_n = 1;Model_Sel = 0;Fword = 85899;   // 1khz  1msPword  = 0;#20000000;$stop;end
endmodule

DDS_ACM9767模块

​ DDS_ACM9767为中间模块,主要功能为根据计算出的频率字和相位字,预设频率和相位,并能通过频率选择字、相位选择字进行选择。

  • Note: 该模块仿真中设定的 F c l k F_{clk} Fclk为125MHz
DDS_ACM9767.v
// 时钟为125MHz
module DDS_ACM9767(Clk,Reset_n,Model_Sel[1:0],Fword_Sel[2:0],Pword_Sel[2:0],Data[13:0]);input Clk;input Reset_n;input [1:0] Model_Sel;input [2:0] Fword_Sel;input [2:0] Pword_Sel;output wire [13:0] Data;// Fwordreg [31:0] Fword;always@(posedge Clk or negedge Reset_n)if(!Reset_n)Fword <= 0;else begincase(Fword_Sel)0: Fword <= 34;    // 1Hz  1/(125MHz)/2^{32}1: Fword <= 344;  // 10Hz2: Fword <= 3436;  // 100Hz3: Fword <= 34360;  // 1KHz4: Fword <= 343597;  // 10KHz5: Fword <= 3435974; // 100KHZ6: Fword <= 34359738;  // 1MHz7: Fword <= 343597384;  // 10MHzdefault: Fword <= 0;endcaseend// Pwordreg [11:0] Pword;always@(posedge Clk or negedge Reset_n)if(!Reset_n)Pword <= 0;else begincase(Pword_Sel)0: Pword <= 0;   // 01: Pword <= 341;  // 30      4096 / 122: Pword <= 683; // 603: Pword <= 1024;  // 904: Pword <= 1707;  // 1505: Pword <= 2048;  // 1806: Pword <= 3072;  // 2707: Pword <= 3641;  // 320default: Pword <= 0;endcaseendACM9767 ACM9767_Ins(.Clk(Clk), .Reset_n(Reset_n),.Model_Sel(Model_Sel),  // 波形选择.Fword(Fword),      // 频率控制字.Pword(Pword),     // 相位控制字.Data(Data)        // 输出数据);
endmodule
DDS_ACM9767_tb.v
`timescale 1ns / 1nsmodule DDS_ACM9767_tb();reg Clk;reg Reset_n;reg [1:0] Model_Sel_A;reg [2:0] Fword_Sel_A;reg [2:0] Pword_Sel_A;wire [13: 0] DataA;reg [1:0] Model_Sel_B;reg [2:0] Fword_Sel_B;reg [2:0] Pword_Sel_B;wire [13: 0] DataB;DDS_ACM9767 DDS_ACM9767_Ins_A(.Clk(Clk),.Reset_n(Reset_n),.Model_Sel(Model_Sel_A),.Fword_Sel(Fword_Sel_A),.Pword_Sel(Pword_Sel_A),.Data(DataA));DDS_ACM9767 DDS_ACM9767_Ins_B(.Clk(Clk),.Reset_n(Reset_n),.Model_Sel(Model_Sel_B),.Fword_Sel(Fword_Sel_B),.Pword_Sel(Pword_Sel_B),.Data(DataB));initial Clk = 1;always #4 Clk = !Clk;   //125MHzinitial beginReset_n = 0;#201;Reset_n = 1;Model_Sel_A = 0;Fword_Sel_A = 6;  // 1MHzPword_Sel_A = 0;Model_Sel_B = 0;Fword_Sel_B = 6;  // 1MHzPword_Sel_B = 3;  // 90#2000000;Reset_n = 0;#201;Reset_n = 1;Model_Sel_A = 1;Fword_Sel_A = 5;  // 1MHzPword_Sel_A = 0;#2000000;$stop;end
endmodule

DDS_Module模块

​ 该模块为顶层模块,例化两个DDS_ACM9767模块,并例化六个按键用于控制波形、频率和相位。由于晶振为50MHz有源晶振,要想使用125MHz的时钟信号来驱动ACM9767运行,需要通过锁相环(PLL)对基频信号进行倍频分频,锁相环的配置可通过时钟管理单元IP核进行。

  • Note: 用按键触发信号,作为DDS_ACM9767模块的复位信号,当按下按键改变设置时,相应参数也重新复原。
时钟管理单元IP核

​ 由于开发板上晶振为50MHz,需要使用时钟管理单元,生成125MHz信号。

​ 在IP Catlalog中找到Clocking Wizard

在这里插入图片描述

​ 输入信号频率设为50MHz

在这里插入图片描述

​ 输出信号频率设为125MHz

在这里插入图片描述

​ 复位类型选择低电平触发(根据开发板硬件设计)

在这里插入图片描述

DDS_Module.v
module DSS_Module(Clk,Reset_n,ClkA,SkeyA,FkeyA,PkeyA,WrtA,ClkB,SkeyB,FkeyB,PkeyB,WrtB,DataA[13:0],DataB[13:0]);input Clk;input Reset_n;input SkeyA;input FkeyA;input PkeyA;input SkeyB;input FkeyB;input PkeyB;output wire ClkA;output wire ClkB;output wire WrtA;output wire WrtB;output wire [13:0] DataA;output wire [13:0] DataB;// clockwire Clk125MHz;wire locked;// DDS_ACM9767reg [1:0] Model_Sel_A;reg [2:0] Fword_Sel_A;reg [2:0] Pword_Sel_A;reg [1:0] Model_Sel_B;reg [2:0] Fword_Sel_B;reg [2:0] Pword_Sel_B;// keywire Press_Flag_SkeyA;wire Release_Flag_SkeyA;wire filter_state_SkeyA;wire Press_Flag_FkeyA;wire Release_Flag_FkeyA;wire filter_state_FkeyA;wire Press_Flag_PkeyA;wire Release_Flag_PkeyA;wire filter_state_PkeyA;wire Press_Flag_SkeyB;wire Release_Flag_SkeyB;wire [1:0] filter_state_SkeyB;wire Press_Flag_FkeyB;wire Release_Flag_FkeyB;wire [1:0] filter_state_FkeyB;wire Press_Flag_PkeyB;wire Release_Flag_PkeyB;wire [1:0] filter_state_PkeyB;wire Reset_A;wire Reset_B;assign Reset_A = Release_Flag_SkeyA | Release_Flag_FkeyA | Release_Flag_PkeyA;assign Reset_B = Release_Flag_SkeyB | Release_Flag_FkeyB | Release_Flag_PkeyB;assign ClkA = Clk125MHz;assign ClkB = Clk125MHz;assign WrtA = ClkA;assign WrtB = ClkB;// 时钟管理单元生成125MHz时钟clk_wiz_0 clk_125_ins(.Clk125MHz(Clk125MHz),     // output Clk125MHz.resetn(Reset_n), // input rese    .locked(locked),       // output locked// Clock in ports.clk_in1(Clk));      // 例化DDS_ACM9767DDS_ACM9767 DDS_ACM9767_Ins_A(.Clk(Clk125MHz),.Reset_n(!Reset_A),
//            .Reset_n(Reset_n),.Model_Sel(Model_Sel_A),.Fword_Sel(Fword_Sel_A),.Pword_Sel(Pword_Sel_A),.Data(DataA));DDS_ACM9767 DDS_ACM9767_Ins_B(.Clk(Clk125MHz),.Reset_n(!Reset_B),
//            .Reset_n(Reset_n),.Model_Sel(Model_Sel_B),.Fword_Sel(Fword_Sel_B),.Pword_Sel(Pword_Sel_B),.Data(DataB));// 例化Key_Filterkey_filter key_filter_SkeyA(.Clk(Clk125MHz),.Reset_n(Reset_n),.signal(SkeyA),.Press_Flag(Press_Flag_SkeyA),.Release_Flag(Release_Flag_SkeyA),.filter_state(filter_state_SkeyA),.result());key_filter key_filter_FkeyA(.Clk(Clk125MHz),.Reset_n(Reset_n),.signal(FkeyA),.Press_Flag(Press_Flag_FkeyA),.Release_Flag(Release_Flag_FkeyA),.filter_state(filter_state_FkeyA),.result());key_filter key_filter_PkeyA(.Clk(Clk125MHz),.Reset_n(Reset_n),.signal(PkeyA),.Press_Flag(Press_Flag_PkeyA),.Release_Flag(Release_Flag_PkeyA),.filter_state(filter_state_PkeyA),.result());key_filter key_filter_SkeyB(.Clk(Clk125MHz),.Reset_n(Reset_n),.signal(SkeyB),.Press_Flag(Press_Flag_SkeyB),.Release_Flag(Release_Flag_SkeyB),.filter_state(filter_state_SkeyB),.result());key_filter key_filter_FkeyB(.Clk(Clk125MHz),.Reset_n(Reset_n),.signal(FkeyB),.Press_Flag(Press_Flag_FkeyB),.Release_Flag(Release_Flag_FkeyB),.filter_state(filter_state_FkeyB),.result());key_filter key_filter_PkeyB(.Clk(Clk125MHz),.Reset_n(Reset_n),.signal(PkeyB),.Press_Flag(Press_Flag_PkeyB),.Release_Flag(Release_Flag_PkeyB),.filter_state(filter_state_PkeyB),.result());// Model_Sel_Aalways@(posedge Clk125MHz or negedge Reset_n)if(!Reset_n)Model_Sel_A <= 0;else if(Release_Flag_SkeyA && (filter_state_SkeyA == 0))Model_Sel_A <= Model_Sel_A + 1;// Fword_Sel_Aalways@(posedge Clk125MHz or negedge Reset_n)if(!Reset_n)Fword_Sel_A <= 3;  // 1khzelse if(Release_Flag_FkeyA && (filter_state_FkeyA == 0))Fword_Sel_A <= Fword_Sel_A + 1;// Pword_Sel_Aalways@(posedge Clk125MHz or negedge Reset_n)if(!Reset_n)Pword_Sel_A<= 0;else if(Release_Flag_PkeyA && (filter_state_PkeyA == 0))Pword_Sel_A <=Pword_Sel_A + 1;// Model_Sel_Balways@(posedge Clk125MHz or negedge Reset_n)if(!Reset_n)Model_Sel_B <= 1;else if(Release_Flag_SkeyB && (filter_state_SkeyB == 0))Model_Sel_B <= Model_Sel_B + 1;// Fword_Sel_Balways@(posedge Clk125MHz or negedge Reset_n)if(!Reset_n)Fword_Sel_B <= 3;else if(Release_Flag_FkeyB && (filter_state_FkeyB == 0))Fword_Sel_B <= Fword_Sel_B + 1;// Pword_Sel_Balways@(posedge Clk125MHz or negedge Reset_n)if(!Reset_n)Pword_Sel_B<= 0;else if(Release_Flag_PkeyB && (filter_state_PkeyB == 0))Pword_Sel_B <= Pword_Sel_B + 1;
endmodule
DDS_Module_tb.v
  • Note: 由于信号较多,软件仿真的速度很慢,不利于调试,仅供参考,推荐使用ILA硬件调试。(ILA硬件调试方法会在后面小节具体介绍)
`timescale 1ns / 1ns
// Not in use
module DDS_Module_tb();reg Clk;reg Reset_n;reg SkeyA;reg FkeyA;reg PkeyA;reg SkeyB;reg FkeyB;reg PkeyB;wire ClkA;wire ClkB;wire [13:0] DataA;wire [13:0] DataB;DSS_Module DSS_Module_ins(.Clk(Clk),.Reset_n(Reset_n),.ClkA(ClkA),.SkeyA(SkeyA),.FkeyA(FkeyA),.PkeyA(PkeyA),.WrtA(),.ClkB(ClkB),.SkeyB(SkeyB),.FkeyB(FkeyB),.PkeyB(PkeyB),.WrtB(),.DataA(DataA),.DataB(DataB));initial Clk = 1;always #10 Clk = !Clk;reg [31: 0] rand;initial beginReset_n = 0;#201;Reset_n = 1;press_skeyA(0);press_pkeyA(0);press_fkeyA(0);$stop;endtask press_skeyA;input [3:0] seed;beginSkeyA = 1;#20000000;repeat(5)beginrand = {$random} % 10000000;   // 10ms以内的抖动#rand SkeyA = ~SkeyA;endSkeyA = 0;#20000000;repeat(5)beginrand = {$random} % 10000000;   // 10ms以内的抖动#rand SkeyA = ~SkeyA;endSkeyA = 1;#20000000;#20000000;endendtasktask press_fkeyA;input [3:0] seed;beginFkeyA = 1;#20000000;repeat(5)beginrand = {$random} % 10000000;   // 10ms以内的抖动#rand FkeyA = ~FkeyA;endFkeyA = 0;#20000000;repeat(5)beginrand = {$random} % 10000000;   // 10ms以内的抖动#rand FkeyA = ~FkeyA;endFkeyA = 1;#20000000;#20000000;endendtasktask press_pkeyA;input [3:0] seed;beginPkeyA = 1;#20000000;repeat(5)beginrand = {$random} % 10000000;   // 10ms以内的抖动#rand PkeyA = ~PkeyA;endPkeyA = 0;#20000000;repeat(5)beginrand = {$random} % 10000000;   // 10ms以内的抖动#rand PkeyA = ~PkeyA;endPkeyA = 1;#20000000;#20000000;endendtask
endmodule

key_filter模块

​ 按键模块,进行20ms的消抖处理,若时钟频率改变,则需要修改对于计数器的最大计数值,这里支持的是125MHz的频率。

key_filter.v
// 按键消抖  等待按键按下(下降沿) --->消抖,20ms没出现上升沿 ---> 按键已按下---?等待释放 ---> 20ms? --->已释放
module key_filter(Clk,Reset_n,signal,Press_Flag,Release_Flag,filter_state,result);input Clk;input Reset_n;input signal;output reg Press_Flag;output reg Release_Flag;output reg [1:0] filter_state;output reg result;// 多级寄存器缓解亚稳态现象reg [1: 0] sync_reg;always@(posedge Clk or negedge Reset_n)if(!Reset_n)sync_reg <= 0;elsesync_reg <= {sync_reg[0], signal};// 边缘检测器reg [1:0] edge_reg;    always@(posedge Clk or negedge Reset_n)if(!Reset_n)edge_reg <= 0;elseedge_reg <= {edge_reg[0], sync_reg[1]};wire pos_edge;assign pos_edge = (edge_reg == 2'b01);wire neg_edge;assign neg_edge = (edge_reg == 2'b10);reg [23:0] cnt;// filter_statealways@(posedge Clk or negedge Reset_n)if(!Reset_n)filter_state <= 0;else if(filter_state == 0)beginif(neg_edge)filter_state <= 1;endelse if(filter_state == 1)beginif(pos_edge)filter_state <= 0;  // 回到等待状态else if(cnt == 2500000 - 1)// 20msfilter_state <= 2;endelse if(filter_state == 2)beginif(pos_edge)    // 出现上升沿filter_state <= 3;  // 进入释放消抖endelse if(filter_state == 3)beginif(neg_edge)filter_state <= 2;else if(cnt == 2500000 - 1)filter_state <= 0;end// Press_Flagalways@(posedge Clk or negedge Reset_n)if(!Reset_n)Press_Flag <= 0;else if(filter_state == 1 && (cnt == 2500000 - 1))Press_Flag <= 1;else if(filter_state == 2)Press_Flag <= 0;// Release_Flagalways@(posedge Clk or negedge Reset_n)if(!Reset_n)Release_Flag <= 0;else if(filter_state == 0)Release_Flag <= 0;else if(filter_state == 3 && (cnt == 2500000 - 1)) Release_Flag <= 1;// resultalways@(posedge Clk or negedge Reset_n)if(!Reset_n)result <= 1;else if(filter_state == 1 && (cnt == 2500000 - 1))result <= 0;else if(filter_state == 3 && (cnt == 2500000 - 1))result <= 1;// cntalways@(posedge Clk or negedge Reset_n)if(!Reset_n)cnt <= 0;else if(filter_state == 1)begincnt <= cnt + 1;if(pos_edge)cnt <= 0;else if(cnt == 2500000 - 1)cnt <= 0;endelse if(filter_state == 3)begincnt <= cnt + 1;if(neg_edge)cnt <= 0;       else if(cnt == 2500000 - 1)cnt <= 0;end
endmodule
key_filter_tb.v
`timescale 1ns / 1ns
module key_filter_tb();reg Clk;reg Reset_n;reg signal;wire Press_Flag;wire Release_Flag;wire [1:0] filter_state;wire result;key_filter key_filter_ins(.Clk(Clk),.Reset_n(Reset_n),.signal(signal),.Press_Flag(Press_Flag),.Release_Flag(Release_Flag),.filter_state(filter_state),.result(result));initial Clk = 1;always #4 Clk = !Clk;reg [31: 0] rand;initial beginReset_n = 0;#201;Reset_n = 1;#20;press_key(0);$stop;endtask press_key;input [3:0] seed;beginsignal = 1;#20000000;repeat(5)beginrand = {$random} % 10000000;   // 10ms以内的抖动#rand signal = ~signal;endsignal = 0;#20000000;repeat(5)beginrand = {$random} % 10000000;   // 10ms以内的抖动#rand signal = ~signal;endsignal = 1;#20000000;#20000000;endendtask
endmodule

ILA硬件调试方法

​ ILA的使用方式有很多,这里就讲一种我比较喜欢的方式。

​ 首先,运行综合,后打开综合设计器。

在这里插入图片描述

​ 然后在netlist里面,可以选择感兴趣的信号设置debug,被选中的信号左边会有个小爬虫

​ 右上角选择Debug界面
在这里插入图片描述

​ 在Debug界面为没有分配ILA IP核的信号,创建或分配一个探针
在这里插入图片描述

​ 进入到ILA IP核向导界面
在这里插入图片描述

​ 跟着向导走,直到来到以下界面,该界面可以配置需要debug信号探针的类型,DataTrigger Data&Trigger,触发类型信号,设置触发条件后,当达到触发条件时,ILA会对信号进行采样。这里我们只想看看按键按下后,对应的选择字位有没有变化,因此设置成Data类型的探针就好,当按下开发板按键后,手动触发信号采样。

  • PkeyA_IBUF: 是为了展示使用ILA过程。
    在这里插入图片描述
    然后选择合适的深度,就是一次采样中,采样点的个数
    在这里插入图片描述

设置完成后,正常流程生产比特流文件即可。然后当连接到硬件时,Vivado会将比特流文件和调试文件一起烧录到开发板中。
在这里插入图片描述
​ 然后可以看到ILA的界面,点击触发按钮手动触发一次采样。
在这里插入图片描述

​ 可以看到采样到的值
在这里插入图片描述
​ 按下开发板上的按键,再重新手动触发采样,看看值是否有改变,若改变,则说明按键部分的功能实现无误。
在这里插入图片描述

​ ILA还能设置触发条件进行采样,在有些应用中只能通过该方法进行调试,具体方法自行了解。

实验现象

看看效果

FPGA-DDS

相关硬件

小梅哥FPGA ACX720
FPGA芯片型号: XC7A35TFGG484ABX2l
DMA: ACM9767
示波器: 正点原子

http://www.xdnf.cn/news/190207.html

相关文章:

  • 3D架构图软件 iCraft Editor 正式发布 @icraft/player-react 前端组件, 轻松嵌入3D架构图到您的项目
  • 数据可视化
  • 【C++教程】三目运算符
  • Day8 鼠标控制与32位模式切换
  • AIGC重构元宇宙:从内容生成到沉浸式体验的技术革命
  • 临床试验概述:从定义到实践的关键要素
  • R 语言科研绘图第 43 期 --- 桑基图-冲击
  • 软件设计师速通其一:计算机内部数据表示
  • 数据库学习笔记(十三)---存储过程
  • OpenCV 图形API(68)图像与通道拼接函数------垂直拼接两个图像/矩阵的函数concatVert()
  • 手搓传染病模型(SEIR-拓展)
  • 深度对比:Objective-C与Swift的RunTime机制与底层原理
  • 深入理解缓存淘汰策略:LRU 与 LFU 算法详解及 Java 实现
  • 媒资管理之视频管理
  • Prompt Engineering 提示工程:释放大语言模型潜力的关键技术与实践指南
  • C++(初阶)(十四)——多态
  • SwiftUI 10.Toggle介绍和使用
  • 马克·雷伯特:用算法让机器人飞奔的人
  • Mac搭建Flutter IOS环境详细指南
  • 了解Android studio 初学者零基础推荐(1)
  • 算术表达式通常有三种表示形式:中缀表达式、前缀表达式(波兰式)和后缀表达式(逆波兰式)。分别都是什么?
  • 【Java EE初阶】多线程(二)
  • uniapp做app,使用v-for遍历渲染第二层的时候,打包到手机上渲染不出第二层的数据
  • 如何使用极狐GitLab 议题看板?
  • LeetCode 3392、LCR106、3447题解
  • Linux学习笔记(一):Linux下的基本指令
  • 深入理解同源策略与跨域资源共享(CORS)
  • AI与IT协同的典型案例
  • C++ 解决一个简单的图论问题 —— 最小生成树(以 Prim 算法为例)
  • Shell脚本-随机数实战案例