1:整数在内存中的存储
在前面我们已经在操作符那一章博客中引入了,原反补的概念。
正整数的原,反,补码相同。
负整数的三种码表示不同。
2:大小端字节序和字符序判断
1:什么是大小端
很明显,我们在创建变量时的数据顺序,和数据在内存中储存的顺序不同。
通过顺序分类,我们可以分为两种储存模式
大端模式:数据的低位字节内容保存在内存的高地址处,而数据的高位自己内容,保存在内存的低地址处
小端模式:数据的低位自己内容保存在内存的低地址处,高位保存在高位地址处
2:为什么会有大小端
因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着⼀个字节,⼀个字节为8bit 位,但是在C语⾔中除了8 bit 的 char 之外,还有16 bit 的 short 型,32 bit 的 long 型(要看具体的编译器),另外,对于位数⼤于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度⼤于⼀个字节,那么必然存在着⼀个如何将多个字节安排的问题。因此就导致了⼤端存储模式和⼩端存储模式。
例如:⼀个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么0x11 为⾼字节, 0x22 为低字节。对于⼤端模式,就将 0x11 放在低地址中,即 0x0010 中,0x22 放在⾼地址中,即 0x0011 中。⼩端模式,刚好相反。我们常⽤的 X86 结构是⼩端模式,⽽KEIL C51 则为⼤端模式。很多的ARM,DSP都为⼩端模式。有些ARM处理器还可以由硬件来选择是⼤端模式还是⼩端模式。
3:浮点数的储存
浮点数有float,double,long double类型
浮点数表示的范围:float.h里面定义
根据国际标准IEEE(电⽓和电⼦⼯程协会) 754,任意⼀个⼆进制浮点数V可以表⽰成下面的形式:
V = (−1) ∗ S M ∗ 2 E
(−1) S 表⽰符号位,当S=0,V为正数;当S=1,V为负数
M 表⽰有效数字,M是⼤于等于1,⼩于2的
2 E 表⽰指数位
举例来说
十进制的5.0,写成⼆进制是 101.0 ,相当于 1.01×2^2
IEEE 754规定:
对于32位的浮点数,最高的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M
对于64位的浮点数,最高的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M
1:浮点数的存过程
IEEE 754 对有效数字M和指数E,还有⼀些特别规定:
前面说过, 1 ≤ M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中 xxxxxx 表示小 数部分。
IEEE 754 规定,在计算机内部保存M时,默认这个数的第⼀位总是1,因此可以被舍去,只保存后⾯的
xxxxxx部分。⽐如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保 存24位有效数字。
至于指数E,情况就比较复杂首先,E为⼀个无符号整数(unsigned int)。
这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存⼊内存时E的真实值必再加上⼀个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
2:浮点数的取
指数E从内存中取出还可以再分成三种情况:
E不全为0或不全为1
这时,浮点数就采⽤下⾯的规则表⽰,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第⼀位的1。
比如:0.5 的⼆进制形式为0.1,由于规定正数部分必须为1,即将⼩数点右移1位,则为1.0*2^(-1),其阶码为-1+127(中间值)=126,表⽰为01111110,⽽尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000。
E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第⼀位的1,⽽是还原为0.xxxxxx的⼩数。这样做是为了表⽰±0,以及接近于0的很小的数字。
E全为1
这时,如果有效数字M全为0,表⽰±无穷大(正负取决于符号位s)