目录
1.内容介绍
2.部分代码
3.实验结果
4.内容获取
1内容介绍
海洋捕食者优化算法(MPA)是一种基于自然界海洋生物捕食行为的优化算法,它通过模拟海洋捕食者如鲨鱼、海豚等在寻找猎物时的群体协作和个体行为来探索最优解。MPA因其出色的全局搜索能力和高效的局部搜索能力而受到重视。
算法特点:
- 模拟捕食行为:MPA通过模拟海洋捕食者的追踪、包围和突袭等行为来搜索最优解。
- 简洁的数学模型:使用直观的数学公式来描述捕食者的行动模式,易于理解和实现。
- 高效寻优:能够快速找到最优路径,提高路径规划的效率。
- 适应性强:能在复杂多变的环境中保持良好的性能,展现出色的鲁棒性。
在路径规划中的优势:
- 快速收敛:通过模拟海洋捕食者的捕食行为,MPA能够迅速找到接近最优的路径。
- 鲁棒性强:即使在环境条件复杂多变的情况下,也能保持路径规划的最优性和稳定性。
- 灵活性高:适用于多种应用场景,如无人机航迹规划、自动驾驶汽车路径选择等。
- 易于集成:算法结构清晰,易于与其他系统或技术结合,促进智能导航系统的构建和发展。
海洋捕食者优化算法为路径规划问题提供了一个创新的解决方案,不仅加速了最优路径的搜索过程,还提高了路径规划的精度和可靠性,是实现智能导航和自动化控制的有效工具。
2部分代码
clc
clear
close all
tic
%% 地图
G=EXE;
for i=1:20/2
for j=1:20
m=G(i,j);
n=G(21-i,j);
G(i,j)=n;
G(21-i,j)=m;
end
end
%%
S = [1 1];
E = [20 20];
G0 = G;
G = G0(S(1):E(1),S(2):E(2));
[Xmax,dimensions] = size(G);
dimensions = dimensions - 2;
%% 参数设置
SearchAgents_no=20; % Number of search agentszhogn'qu群数量
Max_iteration=200; % Maximum numbef of iterations迭代次数
X_min = 1;
%% 算法
[Alpha_score,Alpha_pos,Convergence_curve]=MPA(SearchAgents_no,Max_iteration,dimensions,Xmax,G);
global_best=Alpha_pos;
%% 结果分析
global_best = round(global_best);
figure(1)
plot(Convergence_curve,'g-');
hold on
xlabel('迭代次数')
ylabel('路径长度')
title(' 收敛曲线变化趋势 ')
legend('MPA')
route = [S(1) Alpha_pos E(1)];
path=generateContinuousRoute(route,G);
path=GenerateSmoothPath(path,G);
figure(2)
for i=1:20/2
for j=1:20
m=G(i,j);
n=G(21-i,j);
G(i,j)=n;
G(21-i,j)=m;
end
end
n=20;
for i=1:20
for j=1:20
if G(i,j)==1
x1=j-1;y1=n-i;
x2=j;y2=n-i;
x3=j;y3=n-i+1;
x4=j-1;y4=n-i+1;
fill([x1,x2,x3,x4],[y1,y2,y3,y4],'K');
hold on
else
x1=j-1;y1=n-i;
x2=j;y2=n-i;
x3=j;y3=n-i+1;
x4=j-1;y4=n-i+1;
fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]);
hold on
end
end
end
hold on
title(' 20*20栅格地图 ')
%% 路径
L=size(path,1);
Sx=path(1,1)-0.5;
Sy=path(1,2)-0.5;
plot(Sx,Sy,'ro','MarkerSize',4,'LineWidth',4); % 起点
for i=1:L-1
figure(2)
MPA=plot([path(i,2) path(i+1,2)]-0.5,[path(i,1) path(i+1,1)]-0.5,'g+-','LineWidth',1.5,'markersize',4);
end
Ex=path(end,1)-0.5;
Ey=path(end,2)-0.5;
plot(Ey,Ex,'gs','MarkerSize',4,'LineWidth',4); % 终点
hold on
legend(MPA,{'MPA'})
3实验结果
4内容获取
主页简介欢迎自取,点点关注,非常感谢!
Matlab实现海洋捕食者优化算法(MPA)求解路径规划问题源码介绍:
1.MatlabR2018b及以上版本一键运行;
2.具有良好的编程习惯,程序均包含简要注释。