YOLO11改进 | 注意力机制 | 对密集和小目标友好的EVAblock 【 完整代码】

秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


本文介绍了一种基于全局显式集中式特征规则的集中式特征金字塔(CFP)检测方法。具体而言,我们首先提出了一种空间显式视觉中心方案,其中使用轻量级MLP来捕捉全局长距离依赖关系,并使用并行可学习视觉中心机制来捕捉输入图像的局部角区域。在此基础上,我们以自顶向下的方式对常用的特征金字塔提出了一个全局集中的规则,其中使用从最深层内特征获得的显式视觉中心信息。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改将修改后的完整代码放在文章的最后方便大家一键运行小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

专栏地址:YOLO11入门 + 改进涨点——点击即可跳转 欢迎订阅

目录

1. 论文

2. 将EVC添加到YOLO11中

2.1 EVC代码实现

2.2 更改init.py文件

2.3 添加yaml文件

2.4 在task.py中进行注册

2.5 执行程序

3.修改后的网络结构图

4. 完整代码分享

5. GFLOPs

6. 进阶

7.总结


1. 论文

论文地址:Centralized Feature Pyramid for Object Detection——点击即可跳转

官方代码:官方代码仓库——点击即可跳转

2. 将EVC添加到YOLO11中

2.1 EVC代码实现

关键步骤一: 将下面代码粘贴到在/ultralytics/ultralytics/nn/modules/block.py中

class Encoding(nn.Module):def __init__(self, in_channels, num_codes):super(Encoding, self).__init__()# init codewords and smoothing factorself.in_channels, self.num_codes = in_channels, num_codesnum_codes = 64std = 1. / ((num_codes * in_channels) ** 0.5)# [num_codes, channels]self.codewords = nn.Parameter(torch.empty(num_codes, in_channels, dtype=torch.float).uniform_(-std, std), requires_grad=True)# [num_codes]self.scale = nn.Parameter(torch.empty(num_codes, dtype=torch.float).uniform_(-1, 0), requires_grad=True)@staticmethoddef scaled_l2(x, codewords, scale):num_codes, in_channels = codewords.size()b = x.size(0)expanded_x = x.unsqueeze(2).expand((b, x.size(1), num_codes, in_channels))# ---处理codebook (num_code, c1)reshaped_codewords = codewords.view((1, 1, num_codes, in_channels))# 把scale从1, num_code变成   batch, c2, N, num_codesreshaped_scale = scale.view((1, 1, num_codes))  # N, num_codes# ---计算rik = z1 - d  # b, N, num_codesscaled_l2_norm = reshaped_scale * (expanded_x - reshaped_codewords).pow(2).sum(dim=3)return scaled_l2_norm@staticmethoddef aggregate(assignment_weights, x, codewords):num_codes, in_channels = codewords.size()# ---处理codebookreshaped_codewords = codewords.view((1, 1, num_codes, in_channels))b = x.size(0)# ---处理特征向量x b, c1, Nexpanded_x = x.unsqueeze(2).expand((b, x.size(1), num_codes, in_channels))# 变换rei  b, N, num_codes,-assignment_weights = assignment_weights.unsqueeze(3)  # b, N, num_codes,# ---开始计算eik,必须在Rei计算完之后encoded_feat = (assignment_weights * (expanded_x - reshaped_codewords)).sum(1)return encoded_featdef forward(self, x):assert x.dim() == 4 and x.size(1) == self.in_channelsb, in_channels, w, h = x.size()# [batch_size, height x width, channels]x = x.view(b, self.in_channels, -1).transpose(1, 2).contiguous()# assignment_weights: [batch_size, channels, num_codes]assignment_weights = torch.softmax(self.scaled_l2(x, self.codewords, self.scale), dim=2)# aggregateencoded_feat = self.aggregate(assignment_weights, x, self.codewords)return encoded_featclass Mlp(nn.Module):"""Implementation of MLP with 1*1 convolutions. Input: tensor with shape [B, C, H, W]"""def __init__(self, in_features, hidden_features=None,out_features=None, act_layer=nn.GELU, drop=0.):super().__init__()out_features = out_features or in_featureshidden_features = hidden_features or in_featuresself.fc1 = nn.Conv2d(in_features, hidden_features, 1)self.act = act_layer()self.fc2 = nn.Conv2d(hidden_features, out_features, 1)self.drop = nn.Dropout(drop)self.apply(self._init_weights)def _init_weights(self, m):if isinstance(m, nn.Conv2d):trunc_normal_(m.weight, std=.02)if m.bias is not None:nn.init.constant_(m.bias, 0)def forward(self, x):x = self.fc1(x)x = self.act(x)x = self.drop(x)x = self.fc2(x)x = self.drop(x)return x#  1*1 3*3 1*1
class ConvBlock(nn.Module):def __init__(self, in_channels, out_channels, stride=1, res_conv=False, act_layer=nn.SiLU, groups=1,norm_layer=partial(nn.BatchNorm2d, eps=1e-6)):super(ConvBlock, self).__init__()self.in_channels = in_channelsexpansion = 4c = out_channels // expansionself.conv1 = Conv(in_channels, c, act=nn.SiLU())self.conv2 = Conv(c, c, k=3, s=stride, g=groups, act=nn.SiLU())self.conv3 = Conv(c, out_channels, 1, act=False)self.act3 = act_layer(inplace=True)if res_conv:self.residual_conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False)self.residual_bn = norm_layer(out_channels)self.res_conv = res_convdef zero_init_last_bn(self):nn.init.zeros_(self.bn3.weight)def forward(self, x, return_x_2=True):residual = xx = self.conv1(x)x2 = self.conv2(x)  # if x_t_r is None else self.conv2(x + x_t_r)x = self.conv3(x2)if self.res_conv:residual = self.residual_conv(residual)residual = self.residual_bn(residual)x += residualx = self.act3(x)if return_x_2:return x, x2else:return xclass Mean(nn.Module):def __init__(self, dim, keep_dim=False):super(Mean, self).__init__()self.dim = dimself.keep_dim = keep_dimdef forward(self, input):return input.mean(self.dim, self.keep_dim)class LVCBlock(nn.Module):def __init__(self, in_channels, out_channels, num_codes, channel_ratio=0.25, base_channel=64):super(LVCBlock, self).__init__()self.out_channels = out_channelsself.num_codes = num_codesnum_codes = 64self.conv_1 = ConvBlock(in_channels=in_channels, out_channels=in_channels, res_conv=True, stride=1)self.LVC = nn.Sequential(Conv(in_channels, in_channels, 1, act=nn.SiLU()),Encoding(in_channels=in_channels, num_codes=num_codes),nn.BatchNorm1d(num_codes),nn.SiLU(inplace=True),Mean(dim=1))self.fc = nn.Sequential(nn.Linear(in_channels, in_channels), nn.Sigmoid())def forward(self, x):x = self.conv_1(x, return_x_2=False)en = self.LVC(x)gam = self.fc(en)b, in_channels, _, _ = x.size()y = gam.view(b, in_channels, 1, 1)x = F.relu_(x + x * y)return xclass GroupNorm(nn.GroupNorm):"""Group Normalization with 1 group.Input: tensor in shape [B, C, H, W]"""def __init__(self, num_channels, **kwargs):super().__init__(1, num_channels, **kwargs)class DWConv_LMLP(nn.Module):"""Depthwise Conv + Conv"""def __init__(self, in_channels, out_channels, ksize, stride=1, act="silu"):super().__init__()self.dconv = Conv(in_channels,in_channels,k=ksize,s=stride,g=in_channels,)self.pconv = Conv(in_channels, out_channels, k=1, s=1, g=1)def forward(self, x):x = self.dconv(x)return self.pconv(x)# LightMLPBlock
class LightMLPBlock(nn.Module):def __init__(self, in_channels, out_channels, ksize=1, stride=1, act="silu",mlp_ratio=4., drop=0., act_layer=nn.GELU,use_layer_scale=True, layer_scale_init_value=1e-5, drop_path=0.,norm_layer=GroupNorm):  # act_layer=nn.GELU,super().__init__()self.dw = DWConv_LMLP(in_channels, out_channels, ksize=1, stride=1, act="silu")self.linear = nn.Linear(out_channels, out_channels)  # learnable position embeddingself.out_channels = out_channelsself.norm1 = norm_layer(in_channels)self.norm2 = norm_layer(in_channels)mlp_hidden_dim = int(in_channels * mlp_ratio)self.mlp = Mlp(in_features=in_channels, hidden_features=mlp_hidden_dim, act_layer=nn.GELU,drop=drop)self.drop_path = DropPath(drop_path) if drop_path > 0. \else nn.Identity()self.use_layer_scale = use_layer_scaleif use_layer_scale:self.layer_scale_1 = nn.Parameter(layer_scale_init_value * torch.ones(out_channels), requires_grad=True)self.layer_scale_2 = nn.Parameter(layer_scale_init_value * torch.ones(out_channels), requires_grad=True)def forward(self, x):if self.use_layer_scale:x = x + self.drop_path(self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * self.dw(self.norm1(x)))x = x + self.drop_path(self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * self.mlp(self.norm2(x)))else:x = x + self.drop_path(self.dw(self.norm1(x)))x = x + self.drop_path(self.mlp(self.norm2(x)))return x# EVCBlock
class EVCBlock(nn.Module):def __init__(self, in_channels, out_channels, channel_ratio=4, base_channel=16):super().__init__()expansion = 2ch = out_channels * expansion# Stem stage: get the feature maps by conv block (copied form resnet.py) 进入conformer框架之前的处理self.conv1 = Conv(in_channels, in_channels, k=3, act=nn.SiLU())self.maxpool = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)  # 1 / 4 [56, 56]# LVCself.lvc = LVCBlock(in_channels=in_channels, out_channels=out_channels, num_codes=64)  # c1值暂时未定# LightMLPBlockself.l_MLP = LightMLPBlock(in_channels, out_channels, ksize=3, stride=1, act="silu", act_layer=nn.GELU,mlp_ratio=4., drop=0.,use_layer_scale=True, layer_scale_init_value=1e-5, drop_path=0.,norm_layer=GroupNorm)self.cnv1 = nn.Conv2d(ch, out_channels, kernel_size=1, stride=1, padding=0)def forward(self, x):x1 = self.maxpool((self.conv1(x)))# LVCBlockx_lvc = self.lvc(x1)# LightMLPBlockx_lmlp = self.l_MLP(x1)# concatx = torch.cat((x_lvc, x_lmlp), dim=1)x = self.cnv1(x)return x

2.2 更改init.py文件

关键步骤二:修改modules文件夹下的__init__.py文件,先导入函数

然后在下面的__all__中声明函数

2.3 添加yaml文件

关键步骤三:在/ultralytics/ultralytics/cfg/models/11下面新建文件yolo11_EVC.yaml文件,粘贴下面的内容

  • 目标检测 
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [ -1, 1, EVCBlock, [ 1024 ] ]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 14], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [[17, 20, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)
  • 语义分割
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [ -1, 1, EVCBlock, [ 1024 ] ]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 14], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [[17, 20, 23], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)
  • 旋转目标检测
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [ -1, 1, EVCBlock, [ 1024 ] ]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 14], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [[17, 20, 23], 1, OBB, [nc, 1]] # Detect(P3, P4, P5)

 温馨提示:本文只是对yolo11基础上添加模块,如果要对yolo11n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple


# YOLO11n
depth_multiple: 0.50  # model depth multiple
width_multiple: 0.25  # layer channel multiple
max_channel:1024# YOLO11s
depth_multiple: 0.50  # model depth multiple
width_multiple: 0.50  # layer channel multiple
max_channel:1024# YOLO11m
depth_multiple: 0.50  # model depth multiple
width_multiple: 1.00  # layer channel multiple
max_channel:512# YOLO11l 
depth_multiple: 1.00  # model depth multiple
width_multiple: 1.00  # layer channel multiple
max_channel:512 # YOLO11x
depth_multiple: 1.00  # model depth multiple
width_multiple: 1.50 # layer channel multiple
max_channel:512

2.4 在task.py中进行注册

关键步骤四:在task.py的parse_model函数中进行注册,

先在task.py导入函数

然后在task.py文件下找到parse_model这个函数,如下图,添加 EVCBlock,  

2.5 执行程序

关键步骤五:在ultralytics文件中新建train.py,将model的参数路径设置为yolo11_EVC.yaml的路径即可

from ultralytics import YOLO
import warnings
warnings.filterwarnings('ignore')
from pathlib import Pathif __name__ == '__main__':# 加载模型model = YOLO("ultralytics/cfg/11/yolo11.yaml")  # 你要选择的模型yaml文件地址# Use the modelresults = model.train(data=r"你的数据集的yaml文件地址",epochs=100, batch=16, imgsz=640, workers=4, name=Path(model.cfg).stem)  # 训练模型

   🚀运行程序,如果出现下面的内容则说明添加成功🚀

                   from  n    params  module                                       arguments0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]2                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]      3                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]4                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]     5                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]6                  -1  1     87040  ultralytics.nn.modules.block.C3k2            [128, 128, 1, True]7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]8                  -1  1    346112  ultralytics.nn.modules.block.C3k2            [256, 256, 1, True]9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]10                  -1  1    249728  ultralytics.nn.modules.block.C2PSA           [256, 256, 1]11                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']12                  -1  1   1666240  ultralytics.nn.modules.block.EVCBlock        [256, 256]13             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]14                  -1  1    111296  ultralytics.nn.modules.block.C3k2            [384, 128, 1, False]15                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']16             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]17                  -1  1     32096  ultralytics.nn.modules.block.C3k2            [256, 64, 1, False]18                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]19            [-1, 14]  1         0  ultralytics.nn.modules.conv.Concat           [1]20                  -1  1     86720  ultralytics.nn.modules.block.C3k2            [192, 128, 1, False]21                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]22            [-1, 10]  1         0  ultralytics.nn.modules.conv.Concat           [1]23                  -1  1    378880  ultralytics.nn.modules.block.C3k2            [384, 256, 1, True]24        [17, 20, 23]  1    464912  ultralytics.nn.modules.head.Detect           [80, [64, 128, 256]]
YOLO11_EVCBlock summary: 372 layers, 4,290,320 parameters, 4,290,304 gradients, 11.6 GFLOPs

3.修改后的网络结构图

4. 完整代码分享

这个后期补充吧~,先按照步骤来即可

5. GFLOPs

关于GFLOPs的计算方式可以查看百面算法工程师 | 卷积基础知识——Convolution

未改进的YOLO11n GFLOPs

改进后的GFLOPs

6. 进阶

可以与其他的注意力机制或者损失函数等结合,进一步提升检测效果

7.总结

通过以上的改进方法,我们成功提升了模型的表现。这只是一个开始,未来还有更多优化和技术深挖的空间。在这里,我想隆重向大家推荐我的专栏——《YOLO11改进有效涨点》。这个专栏专注于前沿的深度学习技术,特别是目标检测领域的最新进展,不仅包含对YOLO11的深入解析和改进策略,还会定期更新来自各大顶会(如CVPR、NeurIPS等)的论文复现和实战分享。

为什么订阅我的专栏? ——《YOLO11改进有效涨点》

  1. 前沿技术解读:专栏不仅限于YOLO系列的改进,还会涵盖各类主流与新兴网络的最新研究成果,帮助你紧跟技术潮流。

  2. 详尽的实践分享:所有内容实践性也极强。每次更新都会附带代码和具体的改进步骤,保证每位读者都能迅速上手。

  3. 问题互动与答疑:订阅我的专栏后,你将可以随时向我提问,获取及时的答疑

  4. 实时更新,紧跟行业动态:不定期发布来自全球顶会的最新研究方向和复现实验报告,让你时刻走在技术前沿。

专栏适合人群:

  • 对目标检测、YOLO系列网络有深厚兴趣的同学

  • 希望在用YOLO算法写论文的同学

  • 对YOLO算法感兴趣的同学等

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1559815.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

实验3 专题地图制图及其拓展

1.主观题 (100分) 实验3 专题地图制图及其拓展 实验目的:熟练掌握符号化、标注注记、格网设计和地图整饰的内容。了解空间插值的概念和意义,学习“地理空间统计”基础。 实验要求:本实验报告内容要求详细的文字过程描述以及三幅结果出图&…

杨校老师项目之基于QT的双色球彩票走势分析系统的设计与实现

获取代码: 知识付费时代,低价有偿获取代码,请理解! (1) 下载链接: 后发(2) 添加博主微信获取(有偿),备注来源: mryang511688项目描述 技术:C、QT等 摘要: 随着生活水平的挺高&…

【LeetCode】每日一题 2024_10_10 优质数对的总数 I(暴力/哈希)

前言 每天和你一起刷 LeetCode 每日一题~ LeetCode 启动! 题目:优质数对的总数 I 代码与解题思路 简单题先暴力~ 直接对着题意模拟即可,力扣上只要是标着简单标签的题目,不用犹豫,直接对他使用暴力吧! …

Unity 从零开始的框架搭建1-2 事件的发布-订阅-取消的小优化及调用对象方法总结[半干货]

该文章专栏是向QFrameWork作者凉鞋老师学习总结得来,吃水不忘打井人,不胜感激 Unity 从零开始的框架搭建1-1 unity中对象调用的三种方式的优缺点分析【干货】-CSDN博客 原来 其实就是对上一节的事件发布订阅类的小优化,原来是这样子的 p…

转行在大模型公司做Prompter是种怎样的体验

2014-2019:安徽双非-城乡规划-本科 2019-2022:南京985-城市规划-硕士 工作经历 2022.07-2023.07:设计院做城市设计; 2023.08-至今:国内大模型公司prompter(提示词工程师) 01 2022年刚毕业…

IDEA使用Maven创建父与子多模块项目

在 IntelliJ IDEA 中使用 Maven 创建父与子多模块项目是一个常见的开发实践,有助于更好地组织和管理代码。在多模块项目中,可以将公共的代码、资源或配置抽离到独立的模块中,然后在其他模块中直接引用。这样可以避免代码重复,提高…

第十一章:规划过程组 (11.1制定项目管理计划--11.5创建WBS)

11.1 制定项目管理计划 • 项目管理计划可以是概括或详细的,每个组成部分的详细程度取决于具体项目的要求 • 项目管理计划应基准化,即至少应规定项目的范围、时间和成本方面的基准以便据此考核项目执行情况和管理项目绩效。 • 在确定基准之前&#xf…

汽车胶黏剂市场研究:预计2030年全球市场规模将达到67.4亿美元

汽车胶黏剂是指专门用于汽车制造和维修过程中,用于粘接、密封和固定各种汽车部件的化学材料。它们在汽车行业中扮演着关键角色,广泛应用于车身、内饰、玻璃、电子元件和其他组件的粘接与密封。汽车胶黏剂旨在提高汽车的结构强度、耐用性、密封性以及舒适…

Spark第一天

MapReduce过程复习 Spark由五部分组成 RDD五大特征 1、 Spark -- 代替MapReduce <<<<< scala是单机的&#xff0c;spark是分布式的。>>>>> 开源的分布式计算引擎 可以快速做计算 -- 因为可以利用内存来做一些计算 (1) 分为5个库(模块) : 1、…

打不死的超强生命力

水熊虫是你可能听说过的小生物&#xff0c;它们能够在极端环境中生存&#xff0c;堪称地球上的“超强幸存者”。数十年来&#xff0c;科学家们试图通过各种极端实验杀死它们&#xff0c;但无论是把它们以900米/秒的速度发射&#xff0c;还是将它们暴露在宇宙辐射下&#xff0c;…

Linux系统本地搭建轻量级文件共享系统PicoShare远程连接实战

前言 本篇文章介绍&#xff0c;如何在Linux系统本地部署轻量级文件共享系统PicoShare&#xff0c;并结合Cpolar内网穿透实现公网环境远程传输文件至本地局域网内文件共享系统。 PicoShare 是一个由 Go 开发的轻量级开源共享文件系统&#xff0c;它没有文件限制&#xff0c;允…

CDGA|数据治理:企业创新发展的强劲引擎

在当今这个数据驱动的时代&#xff0c;企业之间的竞争已经悄然转变为对数据资源的争夺与利用能力的比拼。数据&#xff0c;作为新的生产要素&#xff0c;正以前所未有的速度改变着企业的运营模式、决策方式乃至整个商业生态。而数据治理&#xff0c;作为确保数据质量、安全性、…

FPGA上板调试方式总结----VIO/ILA

在Vivado中&#xff0c;VIO&#xff08;Virtual Input/Output&#xff09;是一种用于调试和测试FPGA设计的IP核&#xff0c;它允许设计者通过JTAG接口实时读取和写入FPGA内部的寄存器&#xff0c;从而检查设计的运行状态并修改其行为。VIO IP核提供了一个简单易用的接口&#x…

二叉树系列(遍历/dfs/bfs)10.10

一、二叉树的右视图(遍历) 给定一个二叉树的 根节点 root&#xff0c;想象自己站在它的右侧&#xff0c;按照从顶部到底部的顺序&#xff0c;返回从右侧所能看到的节点值。 &#xff08;如果右子树为空的话&#xff0c;那么右视图中看到的就是左子树的节点&#xff09; bfs层…

IPguard与Ping32 DLP能力对比,保护企业数据的最佳选择

在信息安全的背景下&#xff0c;数据丢失防护&#xff08;DLP&#xff09;解决方案已成为企业不可或缺的一部分。IPguard和Ping32是市场上两款功能强大的DLP产品。本文将对它们的DLP能力进行详细对比&#xff0c;帮助企业找到最适合自己的数据保护工具。 Ping32的独特之处 Pin…

java复制查询数组-cnblog

java数组 复制数组 copyOf(待复制数组,复制后新数组的长度) 如果复制后数组的长度&#xff0c;长于原来数组&#xff0c;多出来的元素会被补0&#xff0c;如果新数组元素少会从第一个元素&#xff0c;取到指定元素长度 package nb;import java.util.Arrays;public class co…

2024年,有多少程序员被迫转行?真是惨烈啊!

知乎有个很火热的帖子&#xff0c;很多人在讨论今年有多少程序员在被迫转行&#xff0c;原来今年的程序员这么难。 有个老哥说自己干了8年前端程序员&#xff0c;今年被裁之后&#xff0c;薪资从30K降到25K还是没找到工作&#xff0c;现在只能转行去卖保险。 还有一个38岁的老哥…

深度解析|生成式人工智能大模型备案全流程

一、大模型备案的含义 根据《生成式人工智能服务管理暂行办法》第十七条 提供具有舆论属性或者社会动员能力的生成式人工智能服务的&#xff0c;应当按照国家有关规定开展安全评估。这里所说的按照国家有关规定开展安全评估&#xff0c;其实就是生成式人工智能服务备案&#x…

Python_网络编程(IP 端口 协议)

网络编程&#xff1a; 互联网时代&#xff0c;现在基本上所有的程序都是网络程序&#xff0c;很少有单机版的程序了。网络编程就是如何在程序中实现两台计算机的通信。Python语言中&#xff0c;提供了大量的内置模块和第三方模块用于支持各种网络访问&#xff0c;而且Python语言…

JAVA毕业设计187—基于Java+Springboot+vue3的电动车销售管理系统(源代码+数据库)

毕设所有选题&#xff1a; https://blog.csdn.net/2303_76227485/article/details/131104075 基于JavaSpringbootvue3的电动车销售管理系统(源代码数据库)187 一、系统介绍 本项目前后端分离(可以改为ssm版本)&#xff0c;分为用户、管理员两种角色 1、用户&#xff1a; 注…