YOLOv10改进策略【注意力机制篇】| EMA 即插即用模块,提高远距离建模依赖(含二次创新)

一、本文介绍

本文记录的是基于EMA模块的YOLOv10目标检测改进方法研究EMA认为跨维度交互有助于通道或空间注意力预测,并且解决了现有注意力机制在提取深度视觉表示时可能带来的维度缩减问题。在改进YOLOv10的过程中能够为高级特征图产生更好的像素级注意力,能够建模长程依赖并嵌入精确的位置信息。

文章目录

  • 一、本文介绍
  • 二、EMA原理
    • 2.1 EMA原理
      • 2.1.1 Coordinate Attention(CA)
      • 2.1.2 Multi - Scale Attention(EMA)模块
    • 2.2 特点
  • 三、EMA的实现代码
  • 四、创新模块
    • 4.1 改进点1
    • 4.2 改进点2⭐
  • 五、添加步骤
    • 5.1 修改ultralytics/nn/modules/block.py
    • 5.2 修改ultralytics/nn/modules/__init__.py
    • 5.3 修改ultralytics/nn/modules/tasks.py
  • 六、yaml模型文件
    • 6.1 模型改进版本一
    • 6.2 模型改进版本二⭐
  • 六、成功运行结果


二、EMA原理

Efficient Multi-Scale Attention Module with Cross-Spatial Learning

EMA(Efficient Multi - Scale Attention)注意力模块的设计的原理和优势如下:

2.1 EMA原理

2.1.1 Coordinate Attention(CA)

CA通过全局平均池化操作建模跨通道信息,将原始输入张量分解为两个并行的1D特征编码向量,嵌入空间位置信息到通道注意力图中,以增强特征聚合。但CA忽略了整个空间位置间交互的重要性,且1x1卷积核的有限感受野不利于建模局部跨通道交互和利用上下文信息。

2.1.2 Multi - Scale Attention(EMA)模块

  • 特征分组:对于输入特征图 X ∈ R C × H × W X \in \mathbb{R}^{C \times H \times W} XRC×H×WEMA将其在通道维度方向上划分为 G G G个子特征 X = [ X 0 , X 1 , … , X G − 1 ] X = [X_{0}, X_{1}, \ldots, X_{G - 1}] X=[X0,X1,,XG1] X i ∈ R C / G × H × W X_{i} \in \mathbb{R}^{C / G \times H \times W} XiRC/G×H×W,假设学习到的注意力权重描述符将用于增强每个子特征中感兴趣区域的特征表示。
  • 并行子网络EMA采用三个并行路线来提取分组特征图的注意力权重描述符,其中两个在1x1分支,第三个在3x3分支。在1x1分支中,通过两个1D全局平均池化操作分别沿两个空间方向编码通道信息,并将G组重塑和置换到批处理维度,使两个编码特征共享无维度缩减的1x1卷积。在3x3分支中,通过一个3x3卷积捕获多尺度特征表示。这样,EMA不仅编码了通道间信息来调整不同通道的重要性,还将精确的空间结构信息保留到通道中。
  • 跨空间学习:引入两个张量,分别是1x1分支和3x3分支的输出。利用2D全局平均池化在1x1分支的输出中编码全局空间信息,并在通道特征的联合激活机制前将另一个分支的输出转换为对应维度形状。通过矩阵点积操作得到第一个空间注意力图,再类似地得到第二个空间注意力图。最后,每个组内的输出特征图通过两个生成的空间注意力权重值的聚合计算得到,捕获像素级成对关系并突出所有像素的全局上下文。

在这里插入图片描述

2.2 特点

  • 建立多尺度并行子网络:采用并行子结构,避免了更多的顺序处理和大深度,有利于有效建立短程和长程依赖,以获得更好的性能。
  • 避免维度缩减:仅选取CA模块中1x1卷积的共享组件,避免了在卷积操作中进行通道维度缩减,从而更有效地学习有效的通道描述。
  • 融合跨空间信息:通过跨空间学习方法,融合了不同尺度的上下文信息,使CNN能够为高级特征图产生更好的像素级注意力,能够建模长程依赖并嵌入精确的位置信息。
  • 高效且有效:与其他注意力方法(如CBAM、NAM、SA、ECA和CA)相比,EMA不仅在性能上取得了更好的结果,而且在所需参数方面更高效。在多个数据集(如CIFAR - 100、ImageNet - 1k、COCO和VisDrone2019)上的实验表明,EMA在图像分类和对象检测任务中都具有优势,模型复杂度相对较小,且在不同的基准模型(如ResNet50/101和MobileNetV2)上集成时均能有效提升性能。

论文:https://doi.org/10.1016/j.neunet.2024.106314
源码:https://github.com/Lose-Code/UBRFC-Net

三、EMA的实现代码

EMA模块的实现代码如下:

import torch
from torch import nnclass EMA(nn.Module):def __init__(self, channels, c2=None, factor=32):super(EMA, self).__init__()self.groups = factorassert channels // self.groups > 0self.softmax = nn.Softmax(-1)self.agp = nn.AdaptiveAvgPool2d((1, 1))self.pool_h = nn.AdaptiveAvgPool2d((None, 1))self.pool_w = nn.AdaptiveAvgPool2d((1, None))self.gn = nn.GroupNorm(channels // self.groups, channels // self.groups)self.conv1x1 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=1, stride=1, padding=0)self.conv3x3 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=3, stride=1, padding=1)def forward(self, x):b, c, h, w = x.size()group_x = x.reshape(b * self.groups, -1, h, w)  # b*g,c//g,h,wx_h = self.pool_h(group_x)x_w = self.pool_w(group_x).permute(0, 1, 3, 2)hw = self.conv1x1(torch.cat([x_h, x_w], dim=2))x_h, x_w = torch.split(hw, [h, w], dim=2)x1 = self.gn(group_x * x_h.sigmoid() * x_w.permute(0, 1, 3, 2).sigmoid())x2 = self.conv3x3(group_x)x11 = self.softmax(self.agp(x1).reshape(b * self.groups, -1, 1).permute(0, 2, 1))x12 = x2.reshape(b * self.groups, c // self.groups, -1)  # b*g, c//g, hwx21 = self.softmax(self.agp(x2).reshape(b * self.groups, -1, 1).permute(0, 2, 1))x22 = x1.reshape(b * self.groups, c // self.groups, -1)  # b*g, c//g, hwweights = (torch.matmul(x11, x12) + torch.matmul(x21, x22)).reshape(b * self.groups, 1, h, w)return (group_x * weights.sigmoid()).reshape(b, c, h, w)

四、创新模块

4.1 改进点1

模块改进方法1️⃣:直接加入EMA模块
EMA模块添加后如下:

在这里插入图片描述

注意❗:在5.2和5.3小节中需要声明的模块名称为:EMA

4.2 改进点2⭐

模块改进方法2️⃣:基于EMA模块C2f

📌 第二种改进方法是对YOLOv10中的C2f模块进行改进,在C2f提取特征后,利用EMA注意力模块跨空间学习方法,融合了不同尺度的上下文信息,使模型能够为高级特征图产生更好的像素级注意力,并在局部聚合的过程中加入短程和长程依赖,来嵌入精确的位置信息以获得更好的性能。

改进代码如下:

class C2f_EMA(nn.Module):"""Faster Implementation of CSP Bottleneck with 2 convolutions."""def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):"""Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,expansion."""super().__init__()self.c = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, 2 * self.c, 1, 1)self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))self.att = EMA(c2)def forward(self, x):"""Forward pass through C2f layer."""y = list(self.cv1(x).chunk(2, 1))y.extend(m(y[-1]) for m in self.m)return self.att(self.cv2(torch.cat(y, 1)))def forward_split(self, x):"""Forward pass using split() instead of chunk()."""y = list(self.cv1(x).split((self.c, self.c), 1))y.extend(m(y[-1]) for m in self.m)return self.att(self.cv2(torch.cat(y, 1)))

在这里插入图片描述

注意❗:在5.2和5.3小节中需要声明的模块名称为:C2f_EMA


五、添加步骤

5.1 修改ultralytics/nn/modules/block.py

此处需要修改的文件是ultralytics/nn/modules/block.py

block.py中定义了网络结构的通用模块,我们想要加入新的模块就只需要将模块代码放到这个文件内即可。

EMAC2f_EMA模块代码添加到此文件下。

5.2 修改ultralytics/nn/modules/init.py

此处需要修改的文件是ultralytics/nn/modules/__init__.py

__init__.py文件中定义了所有模块的初始化,我们只需要将block.py中的新的模块命添加到对应的函数即可。

EMAC2f_EMAblock.py中实现,所有要添加在from .block import

from .block import (C1,C2,...EMA,C2f_EMA
)

在这里插入图片描述

5.3 修改ultralytics/nn/modules/tasks.py

tasks.py文件中,需要在两处位置添加各模块类名称。

首先:在函数声明中引入EMAC2f_EMA

在这里插入图片描述

在这里插入图片描述

其次:在parse_model函数中注册EMAC2f_EMA模块

在这里插入图片描述

在这里插入图片描述


六、yaml模型文件

6.1 模型改进版本一

在代码配置完成后,配置模型的YAML文件。

此处以ultralytics/cfg/models/v10/yolov10m.yaml为例,在同目录下创建一个用于自己数据集训练的模型文件yolov10m-EMA.yaml

yolov10m.yaml中的内容复制到yolov10m-EMA.yaml文件下,修改nc数量等于自己数据中目标的数量。
在骨干网络的最后一层添加EMA模块只需要填入一个参数,通道数

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32- [-1, 3, C2fCIB, [1024, True]]- [-1, 1, EMA, [1024]]- [-1, 1, SPPF, [1024, 5]] # 10- [-1, 1, PSA, [1024]] # 11# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f, [512]] # 14- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f, [256]] # 17 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 14], 1, Concat, [1]] # cat head P4- [-1, 3, C2fCIB, [512, True]] # 20 (P4/16-medium)- [-1, 1, SCDown, [512, 3, 2]]- [[-1, 11], 1, Concat, [1]] # cat head P5- [-1, 3, C2fCIB, [1024, True]] # 23 (P5/32-large)- [[17, 20, 23], 1, v10Detect, [nc]] # Detect(P3, P4, P5)

6.2 模型改进版本二⭐

此处同样以ultralytics/cfg/models/v10/yolov10m.yaml为例,在同目录下创建一个用于自己数据集训练的模型文件yolov10m-C2f_EMA.yaml

yolov10m.yaml中的内容复制到yolov10m-C2f_EMA.yaml文件下,修改nc数量等于自己数据中目标的数量。

📌 模型的修改方法是将骨干网络中的所有C2f模块替换成C2f_EMA模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f_EMA, [128, True]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f_EMA, [256, True]]- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f_EMA, [512, True]]- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32- [-1, 3, C2fCIB, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 1, PSA, [1024]] # 10# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f, [512]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f, [256]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 3, C2fCIB, [512, True]] # 19 (P4/16-medium)- [-1, 1, SCDown, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 3, C2fCIB, [1024, True]] # 22 (P5/32-large)- [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)

六、成功运行结果

分别打印网络模型可以看到EMA模块C2f_EMA已经加入到模型中,并可以进行训练了。

YOLOv10m-EMA

                   from  n    params  module                                       arguments                     0                  -1  1      1392  ultralytics.nn.modules.conv.Conv             [3, 48, 3, 2]                 1                  -1  1     41664  ultralytics.nn.modules.conv.Conv             [48, 96, 3, 2]                2                  -1  2    111360  ultralytics.nn.modules.block.C2f             [96, 96, 2, True]             3                  -1  1    166272  ultralytics.nn.modules.conv.Conv             [96, 192, 3, 2]               4                  -1  4    813312  ultralytics.nn.modules.block.C2f             [192, 192, 4, True]           5                  -1  1     78720  ultralytics.nn.modules.block.SCDown          [192, 384, 3, 2]              6                  -1  4   3248640  ultralytics.nn.modules.block.C2f             [384, 384, 4, True]           7                  -1  1    228672  ultralytics.nn.modules.block.SCDown          [384, 576, 3, 2]              8                  -1  2   1689984  ultralytics.nn.modules.block.C2fCIB          [576, 576, 2, True]           9                  -1  1      3312  ultralytics.nn.modules.block.EMA             [576, 576]                    10                  -1  1    831168  ultralytics.nn.modules.block.SPPF            [576, 576, 5]                 11                  -1  1   1253088  ultralytics.nn.modules.block.PSA             [576, 576]                    12                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          13             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           14                  -1  2   1993728  ultralytics.nn.modules.block.C2f             [960, 384, 2]                 15                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          16             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           17                  -1  2    517632  ultralytics.nn.modules.block.C2f             [576, 192, 2]                 18                  -1  1    332160  ultralytics.nn.modules.conv.Conv             [192, 192, 3, 2]              19            [-1, 14]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           20                  -1  2    831744  ultralytics.nn.modules.block.C2fCIB          [576, 384, 2, True]           21                  -1  1    152448  ultralytics.nn.modules.block.SCDown          [384, 384, 3, 2]              22            [-1, 11]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           23                  -1  2   1911168  ultralytics.nn.modules.block.C2fCIB          [960, 576, 2, True]           24        [17, 20, 23]  1   2282134  ultralytics.nn.modules.head.v10Detect        [1, [192, 384, 576]]          
YOLOv10m-EMA summary: 506 layers, 16488598 parameters, 16488582 gradients, 64.0 GFLOPs

YOLOv10m-C2f_EMA

                   from  n    params  module                                       arguments                     0                  -1  1      1392  ultralytics.nn.modules.conv.Conv             [3, 48, 3, 2]                 1                  -1  1     41664  ultralytics.nn.modules.conv.Conv             [48, 96, 3, 2]                2                  -1  2    130380  ultralytics.nn.modules.block.C2f_EMA         [96, 96, True]                3                  -1  1    166272  ultralytics.nn.modules.conv.Conv             [96, 192, 3, 2]               4                  -1  4   1038336  ultralytics.nn.modules.block.C2f_EMA         [192, 192, True]              5                  -1  1     78720  ultralytics.nn.modules.block.SCDown          [192, 384, 3, 2]              6                  -1  4   4143936  ultralytics.nn.modules.block.C2f_EMA         [384, 384, True]              7                  -1  1    228672  ultralytics.nn.modules.block.SCDown          [384, 576, 3, 2]              8                  -1  2   1689984  ultralytics.nn.modules.block.C2fCIB          [576, 576, 2, True]           9                  -1  1    831168  ultralytics.nn.modules.block.SPPF            [576, 576, 5]                 10                  -1  1   1253088  ultralytics.nn.modules.block.PSA             [576, 576]                    11                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          12             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           13                  -1  2   1993728  ultralytics.nn.modules.block.C2f             [960, 384, 2]                 14                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          15             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           16                  -1  2    517632  ultralytics.nn.modules.block.C2f             [576, 192, 2]                 17                  -1  1    332160  ultralytics.nn.modules.conv.Conv             [192, 192, 3, 2]              18            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           19                  -1  2    831744  ultralytics.nn.modules.block.C2fCIB          [576, 384, 2, True]           20                  -1  1    152448  ultralytics.nn.modules.block.SCDown          [384, 384, 3, 2]              21            [-1, 10]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           22                  -1  2   1911168  ultralytics.nn.modules.block.C2fCIB          [960, 576, 2, True]           23        [16, 19, 22]  1   2282134  ultralytics.nn.modules.head.v10Detect        [1, [192, 384, 576]]          
YOLOv10m-C2f_EMA summary: 637 layers, 17624626 parameters, 17624610 gradients, 72.1 GFLOPs

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1557448.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

清华提出BEV感知和强化学习融合方法:实现感知和决策的无缝衔接

导读: 本文提出了一种基于鸟瞰图和环视摄像头输入的深度强化学习(DRL)特征提取网络,以获得车辆周围完整的环境信息。基于经典的自动驾驶感知任务语义分割,对提出的特征提取网络从环视摄像头中提取的高维环境特征进行解…

SpringBoot飘香水果网站:从概念到实现

3系统分析 3.1可行性分析 通过对本飘香水果购物网站实行的目的初步调查和分析,提出可行性方案并对其一一进行论证。我们在这里主要从技术可行性、经济可行性、操作可行性等方面进行分析。 3.1.1技术可行性 本飘香水果购物网站采用JAVA作为开发语言,Sprin…

阿里云云虚拟主机SSL证书安装指南

在安装SSL证书的过程中,您需要确保已经正确获取了SSL证书文件,并且能够访问阿里云云虚拟主机的管理页面。以下是详细的步骤说明: 第一步:准备SSL证书 申请SSL证书:访问华测ctimall网站(https://www.ctimal…

Transformer+时间序列预测,依然是顶会密码!看完这些你也行!

最近在时间序列预测领域,Transformer再次崭露头角!全新的iTransformer模型以其独特优势,在不修改任何模块的情况下,实现了全面领先。 事实上,「基于Transformer进行时间序列预测」 一直是研究的焦点之一。这主要归功于…

恶意软件基础知识——恶意软件命名

计算机病毒(Computer Virus)指编制或者在计算机程序中插入的破坏计算机功能或者破坏数据,影响计算机使用并且能够自我复制的一组计算机指令或者程序代码。 ——《中华人民共和国计算机信息系统安全保护条例》 恶意软件的定义 恶意软件是一个用来描述恶意应用程序…

EMC-共模耦合

本次内容主要谈论共模耦合,EMC中数量可观且极为棘手的问题大都由共模引起,近端时间一直在研究共模问题,有一点心得,跟大家一起分享。在抗扰度测试过程中,比如CBCI测试时,所有线束都会施加干扰信号&#xff…

俗人,精气神,歌曲《错的人》

精气神,在人体中,精指构成人体生命活动的各层次的有形元素,常呈固体或液体状态。 哲学前提:世界上的一切,从微观上讲,都是由精微物质构成的,比如基本粒子。 关于有形与无形、与主观关注点相关…

YOLO--前置基础词-学习总结(上)

RFBNet是什么意思 RFBNet 是一种用于目标检测的深度学习网络,它的名字来源于 "Receptive Field Block Network"(感受野块网络)。简单来说,RFBNet 是一种可以让计算机更好地“看”图像中不同大小的物体的方法。 在图像处…

原生input实现时间选择器用法

2024.10.08今天我学习了如何用原生的input&#xff0c;实现时间选择器用法&#xff0c;效果如下&#xff1a; 代码如下&#xff1a; <div><input id"yf_start" type"text"> </div><script>$(#yf_start).datepicker({language: zh…

Qwen变体新成员加一,英伟达训练 NVLM-D-72B 视觉大模型

今天&#xff08;2024 年 9 月 17 日&#xff09;&#xff0c;我们推出了前沿级多模态大语言模型&#xff08;LLM&#xff09;系列 NVLM 1.0&#xff0c;它在视觉语言任务上取得了最先进的结果&#xff0c;可与领先的专有模型&#xff08;如 GPT-4o&#xff09;和开放存取模型&…

低代码赋能汽车制造产业链场景系列

当前汽车行业数字化智能化转型浪潮下&#xff0c;整车及其上下游产业链的协同创新正变得至关重要。头部车企与上下游供应链企业正逐步解决在生产管理、业务互通、系统集成等方面的痛点与挑战。电动化、智能化、网联化作为汽车产业的三大趋势&#xff0c;正共同推动未来汽车产业…

Web自动化Demo-Kotlin+Selenium

1.新建工程 打开Aqua&#xff0c;点击New Project选中Kotlin&#xff0c;配置如下&#xff1a; 然后在build.gradle.kts文件中添加依赖 plugins {kotlin("jvm") version "1.9.23" }group "org.example" version "1.0-SNAPSHOT"rep…

数据分析:宏基因组群落TOPOSCORE拓扑结构打分

文章目录 介绍数据TOPOSCORE算法SCORE计算TOPOSCORE实操tp_helper.R导入数据生存分析Fisher精确检验聚类分析SIG定义Toposcoring 分数计算Akkermansia muciniphila的考虑TOPOSCORE的验证总结系统信息介绍 研究背景:肠道微生物群对癌症患者对免疫检查点抑制剂(ICIs)的临床反…

<Rust>iced库(0.13.1)学习之部件(三十一):picklist部件的使用及可变style设置

前言 本专栏是学习Rust的GUI库iced的合集,将介绍iced涉及的各个小部件分别介绍,最后会汇总为一个总的程序。 iced是RustGUI中比较强大的一个,目前处于发展中(即版本可能会改变),本专栏基于版本0.12.1. 注:新版本已更新为0.13 概述 这是本专栏的第三十一篇,主要说明下…

基于springboot vue地方废物回收机构管理系统设计与实现

博主介绍&#xff1a;专注于Java&#xff08;springboot ssm 等开发框架&#xff09; vue .net php phython node.js uniapp 微信小程序 等诸多技术领域和毕业项目实战、企业信息化系统建设&#xff0c;从业十五余年开发设计教学工作 ☆☆☆ 精彩专栏推荐订阅☆☆☆☆☆不…

新生培训 day1 C语言基础 顺序 分支 循环 数组 字符串 函数

比赛地址 b牛客竞赛_ACM/NOI/CSP/CCPC/ICPC算法编程高难度练习赛_牛客竞赛OJ C语言数据类型 字符 整型数 int 2e9 long long 9e18 浮点数 代码示例 /** Author: Dduo * Date: 2024-10-8* Description: 新生培训day1 */ #include <stdio.h>int main() {// 定义变量in…

论文速读:基于渐进式转移的无监督域自适应舰船检测

这篇文章的标题是《Unsupervised Domain Adaptation Based on Progressive Transfer for Ship Detection: From Optical to SAR Images》基于渐进式转移的无监督域自适应舰船检测:从光学图像到SAR图像&#xff0c;作者是Yu Shi等人。文章发表在IEEE Transactions on Geoscience…

TDesign - 腾讯出品的企业级开源设计系统越发成熟稳定,支持 Vue3 / 小程序,适合开发企业中后台和移动应用

TDesing 发展越来越好了&#xff0c;出了好几套组件库&#xff0c;很成熟稳定了&#xff0c;新项目完全可以考虑使用。 早在2021年&#xff0c;腾讯的 TDesing 刚发布不久&#xff0c;我就写了一篇简短的文章来介绍&#xff0c;当时主要关注的是 TDesign 的 Vue 组件库和用来搭…

计算机基础知识:计算机中丢失 msvcr110.dll怎么修复?

1. msvcp110.dll 介绍 1.1 定义&#xff1a;Microsoft Visual C 2012的一部分 msvcp110.dll是Microsoft Visual C 2012 Redistributable Package的一部分&#xff0c;这是一个运行时库文件&#xff0c;包含了Microsoft Visual C 2012编译器所构建程序所需的函数和资源。 1.2…

大数据ETL数据提取转换和加载处理

什么是 ETL&#xff1f; 提取转换加载&#xff08;英语&#xff1a;Extract, transform, load&#xff0c;简称ETL&#xff09;&#xff0c;用来描述将资料从来源端经过抽取、转置、加载至目的端的过程。ETL一词较常用在数据仓库&#xff0c;但其对象并不限于数据仓库。 ETL&…