【C++】二叉搜索树+变身 = 红黑树

头像
🚀个人主页:@小羊
🚀所属专栏:C++
很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~

动图描述

目录

  • 前言
    • 一、定义与性质
    • 二、红黑树节点的定义
    • 三、新增节点插入
    • 四、验证红黑树
    • 五、AVL树和红黑树比较


前言

本文仅适合了解二叉搜索树,但不了解红黑树底层原理的同学阅读哦。

本篇文章不会带你从头到尾实现红黑树,但会带你深入理解红黑树是怎么实现平衡的,怎么通过旋转变换实现保持平衡,以及实现平衡过程中的细节应该怎么处理等。


一、定义与性质

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。

#

  1. 根节点是黑色的
  2. 每个节点不是红色就是黑色
  3. 如果一个节点是红色的,则它的两个孩子一定是黑色的(没有连续的红色节点)
  4. 对每个节点,从该节点到其所有后代叶子结点的简单路径上,黑色节点数目相同
  5. 每个叶子节点都是黑色的(此处的叶子结点指的是空节点,通常是为了算路径)

其中第三点和第四点是控制红黑树平衡的关键,与AVL树不同的是,红黑树不再关注高度,只关注颜色,只要控制住了颜色就控制住了高度。


二、红黑树节点的定义

维持二叉搜索树的平衡,旋转处理是必要的,因此红黑树的节点也需要指向其父节点。

enum Colour
{RED,BLACK
};template<class K, class V>
struct RBTreeNode
{pair<K, V> _kv;RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;Colour _col;RBTreeNode(const pair<K, V>& kv, colour col = RED):_kv(kv), _left(nullptr), _right(nullptr), _parent(nullptr), _col(col){}
};

上面我们将节点的默认颜色设置为红色,为什么不是黑色呢?

新增节点默认设置为红色或黑色都可能会破坏红黑树的性质,默认为红色对红黑树的性质影响最小,就算修改也更为容易。另外红黑树主要还是以黑色节点为主,在红黑树中黑色节点通常都是通过变色而来的,而红色节点往往都是新增的。


三、新增节点插入

虽然新增节点默认为红色,但根节点必须是黑色。

bool Insert(const pair<K, V>& kv)
{Node* pcur = _root;Node* parent = nullptr;if (pcur == nullptr)//当前还没有节点{_root = new Node(kv);_root->_col = BLACK;//根节点必须是黑色的return true;}//...
}

插入一个红色节点,其父亲是红色时才需要处理, 当父亲是红色时其爷爷一定是黑色,不然在插入新节点之前红黑树就已经有问题了。

所以处理过程的关键是看叔叔,大体可以分为两种情况:

其中g表示grandfatherp表示parentu表示unclea,b,c,d,e为红黑子树。

| 情况一:g为黑,p为红,u存在且为红
| 处理方法:变色,继续向上调整

在这里插入图片描述

上图中pcur可能为新增节点,也可能之前为黑,是经过变色而来的。

//当父节点存在且为红时需要调整
while (parent && parent->_col == RED)
{if (parent == grandfather->_left){uncle = grandfather->_right;}else{uncle = grandfather->_left;}if (uncle && uncle->_col == RED)//情况一:u存在且为红{parent->_col = BLACK;uncle->_col = BLACK;grandfather->_col = RED;if (grandfather->_parent == nullptr){grandfather->_col = BLACK;return true;}pcur = grandfather;parent = pcur->_parent;grandfather = parent->_parent;}//...
}

| 情况二:g为黑,p为红,u存在且为黑 / u不存在
| 处理方法:旋转 + 变色

单旋:
在这里插入图片描述

void RotateR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;subL->_right = parent;if (subLR){subLR->_parent = parent;}Node* parentparent = parent->_parent;parent->_parent = subL;if (parentparent == nullptr){_root = subL;}else{if (parent == parentparent->_left){parentparent->_left = subL;}else{parentparent->_right = subL;}}subL->_parent = parentparent;
}void RotateL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL){subRL->_parent = parent;}subR->_left = parent;Node* parentparent = parent->_parent;parent->_parent = subR;if (parentparent == nullptr){_root = subR;}else{if (parent == parentparent->_left){parentparent->_left = subR;}else{parentparent->_right = subR;}}subR->_parent = parentparent;
}

双旋:
在这里插入图片描述

//当父节点存在,且颜色为红,需要往上更新
while (parent && parent->_col == RED)
{if (parent == grandfather->_left){uncle = grandfather->_right;}else{uncle = grandfather->_left;}//情况一:u存在且为红else //情况二:u存在且为黑 / 情况三:u不存在{if (parent == grandfather->_left && pcur == parent->_left){RotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else if (parent == grandfather->_left && pcur == parent->_right){RotateL(parent);RotateR(grandfather);pcur->_col = BLACK;grandfather->_col = RED;}else if (parent == grandfather->_right && pcur == parent->_left){RotateR(parent);RotateL(grandfather);pcur->_col = BLACK;grandfather->_col = RED;}else if (parent == grandfather->_right && pcur == parent->_right){RotateL(grandfather);parent->_col = BLACK;grandfather->_cocl = RED;}break;}
}

总结:

  • 红黑树的插入主要以黑色节点为主,时刻维持黑色节点的数量
  • 处理过程应尽量避免旋转,能变色就不旋转
  • 黑色节点通常都是受限于红黑树的性质而不得不变色而来的,红色节点通常都是新增的

不管是变色还是旋转,始终都要保持插入新节点前后各路径上黑色节点的数量。


四、验证红黑树

  1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)
  2. 检测其是否满足红黑树的性质

检测红黑树的性质,主要检测红黑树的根节点是否为黑色、任意一个红色节点的父节点不是红色、任意节点到根节点的路径上黑色节点的数量相等。
其中检测任意节点到根节点的路径上黑色节点数量相等可以用递归处理,先算出某条路径上黑色节点的数量,通过递归与每条路径上黑色节点的数量最对比,如果与某条路径上黑色节点的数量不相等则红黑树异常。

bool IsValidRBTree()
{Node* pRoot = _root;if (nullptr == pRoot){return true;}//检测根节点是否满足情况if (BLACK != pRoot->_col){cout << "违反性质二:根节点必须为黑色" << endl;return false;}//获取任意一条路径中黑色节点的个数size_t blackCount = 0;Node* pcur = pRoot;while (pcur){if (BLACK == pcur->_col)blackCount++;pcur = pcur->_left;}//检测是否满足红黑树的性质,k用来记录路径中黑色节点的个数size_t k = 0;return _IsValidRBTree(pRoot, k, blackCount);
}bool _IsValidRBTree(Node* pRoot, size_t k, const size_t blackCount)
{//走到nullptr后,判断k和black是否相等if (nullptr == pRoot){cout << k << endl; if (k != blackCount){cout << "违反性质四:每条路径中黑色节点的个数必须相同" << endl;return false;}return true;}//统计黑色节点的个数if (BLACK == pRoot->_col){k++;}//检测当前节点与其双亲是否都为红色Node* pParent = pRoot->_parent;if (pParent && RED == pParent->_col && RED == pRoot->_col){cout << "违反性质三:没有连在一起的红色节点" << endl;return false;}return _IsValidRBTree(pRoot->_left, k, blackCount) &&_IsValidRBTree(pRoot->_right, k, blackCount);
}

五、AVL树和红黑树比较

  • 红黑树:
    • 平衡机制基于颜色和一系列规则(如节点颜色、红色节点的子节点颜色、路径上黑色节点数量等)
    • 允许节点之间的高度差超过1,但通过保证从根节点到叶节点的任意路径上黑色节点的数量相同来避免树的高度过大
    • 在插入或删除节点时,可能需要通过变色和少量的旋转操作来维持平衡
  • AVL树:
    • 平衡机制基于每个节点的左子树高度和右子树高度之差

    • 严格要求所有节点的平衡因子为-1、0或1,即左右子树高度差不超过1

    • 在插入或删除节点时,可能需要通过多次旋转操作来维持平衡,并更新每个节点的平衡因子

红黑树相对AVL树并没有那么严格地要求平衡,仅通过颜色控制最长路径中节点个数不会超过最短路径节点个数的两倍就行。

当AVL树不平衡时仅通过旋转来处理,红黑树不平衡时可以变色、变色+旋转处理,显然红黑树插入、删除过程更有优势,而AVL树查找过程更有优势。而set和map底层、Linux内核等都使用红黑树实现。


本篇文章的分享就到这里了,如果您觉得在本文有所收获,还请留下您的三连支持哦~

头像

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1556467.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

动态内存管理笔试题

目录 1.第一题1.1如何修改 2.第二题2.1题想2.2深刻理解 3.第三题4.第四题 1.第一题 void GetMemory(char* p) {p (char*)malloc(100); } void Test(void) {char* str NULL;GetMemory(str);strcpy(str, "hello world");printf(str); }请问运⾏Test 函数会有什么样的…

SSM湘农乐市农产品交易平台-计算机毕业设计源码28246

目 录 SSM湘农乐市农产品交易平台 1 绪论 1.1研究背景 1.2研究意义 1.3研究方法 1.4论文结构与章节安排 2 湘农乐市农产品交易平台系统分析 2.1 可行性分析 2.2 系统流程分析 2.3 系统功能分析 2.4 系统用例分析 2.5本章小结 3 湘农乐市农产品交易平…

环境对于写作有何影响?

如果你是有灵性、热爱文学创作的人&#xff0c;多半就会喜欢安静的生活环境。因为你会感受到唯有在这样的环境里更才能够沉下心来思考创作的路径。而且此时的你&#xff0c;显得头脑清醒、思维活跃而自由&#xff0c;因之文思泉涌。 网络图&#xff1a;宁静的书房 反之&#x…

【工作流引擎集成】springboot+Vue+activiti+mysql带工作流集成系统,直接用于业务开发,流程设计,工作流审批,会签

前言 activiti工作流引擎项目&#xff0c;企业erp、oa、hr、crm等企事业办公系统轻松落地&#xff0c;一套完整并且实际运用在多套项目中的案例&#xff0c;满足日常业务流程审批需求。 一、项目形式 springbootvueactiviti集成了activiti在线编辑器&#xff0c;流行的前后端…

Case:cocos地图和网格初始化

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言非盈利博客&#xff0c;只是学习笔记&#xff0c;如有雷同&#xff0c;十分抱歉。 一、生成一个100*100的网格背景代码分析导入必要的模块定义装饰器和类类定义…

c++继承(下)

c继承&#xff08;下&#xff09; &#xff08;1&#xff09;继承与友元&#xff08;2&#xff09;继承与静态成员&#xff08;3&#xff09;多继承及其菱形继承问题3.1 继承模型3.2 虚继承3.3 多继承中指针偏移问题 &#xff08;4&#xff09;继承和组合&#xff08;9&#xf…

Pytorch实现心跳信号分类识别(支持LSTM,GRU,TCN模型)

Pytorch实现心跳信号分类识别(支持LSTM,GRU,TCN模型&#xff09; 目录 Pytorch实现心跳信号分类识别(支持LSTM,GRU,TCN模型&#xff09; 1. 项目说明 2. 数据说明 &#xff08;1&#xff09;心跳信号分类预测数据集 3. 模型训练 &#xff08;1&#xff09;项目安装 &am…

大模型项目如何判断用RAG还是微调

大模型项目如何判断用RAG还是微调 在大模型项目中&#xff0c;选择使用检索增强生成&#xff08;Retrieval-Augmented Generation, RAG&#xff09;还是微调&#xff08;Fine-Tuning&#xff09;取决于多个因素&#xff0c;包括项目的具体需求、数据的可用性、性能要求、成本和…

jQuery——平滑翻页

平滑翻页 param next true&#xff1a;下一页 false&#xff1a;下一页 本文分享到此结束&#xff0c;欢迎大家评论区相互讨论学习&#xff0c;下一篇继续分享jQuery中循环翻页的学习。

自动驾驶传感器系列—自动驾驶中的“眼睛”:摄像头技术详解

&#x1f31f;&#x1f31f; 欢迎来到我的技术小筑&#xff0c;一个专为技术探索者打造的交流空间。在这里&#xff0c;我们不仅分享代码的智慧&#xff0c;还探讨技术的深度与广度。无论您是资深开发者还是技术新手&#xff0c;这里都有一片属于您的天空。让我们在知识的海洋中…

字节放大招:无需LORA训练,小红书写真轻松搞定,Pulid-Flux换脸方案来了

前言 在这之前&#xff0c;SD常用的换脸节点还不支持Flux模型&#xff0c;使用Flux 做虚拟模特最好的方法是炼制人脸lora&#xff0c;但是炼丹是个有技术门槛的活。 之前文章有提过字节跳动的 Pulid团队&#xff0c;率先推出了Pulid-Flux模型&#xff0c;但是之前只能在线上使用…

这些编程工具竟然能让我效率翻倍?开发者必备神器盘点!

人不走空 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌赋&#xff1a;斯是陋室&#xff0c;惟吾德馨 目录 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌…

【STL】stack模拟实现

stack模拟实现比较简单&#xff0c;就是直接调用deque的函数即可。 具体实现&#xff1a; #pragma once#include<deque> #include<iostream>using std::istream; using std::ostream; using std::endl; using std::cout;namespace zyy { //stack -> 后进先出t…

美客多测评系统:批量注册买家号的新利器

美客多&#xff08;MercadoLibre&#xff09;测评系统作为一种在跨境电商领域广泛应用的策略&#xff0c;其核心在于通过批量注册并管理买家账号&#xff0c;模拟真实用户的购物行为&#xff0c;以提升产品的销量、评价数量和店铺权重。以下是对美客多测评系统中批量注册买家号…

数字化转型的实践路径:如何运用TOGAF框架推动企业变革

数字化转型的迫切性与挑战 随着技术的飞速发展和全球市场的快速变化&#xff0c;数字化转型已经成为企业提高竞争力、推动创新、提升运营效率的核心战略。然而&#xff0c;数字化转型并不是简单的技术升级&#xff0c;它涉及到从业务模式、组织结构到技术架构的全面变革。企业…

为什么营业执照显示经营异常

经营异常是怎么回事&#xff1f;是什么意思&#xff1f;1、年报未依照正常的时间公示或者某些要素没有公示;2、营业执照的地址与实际的地址不符&#xff0c;该地址联络不到人。经营异常不处理有什么后果&#xff1f;有什么影响&#xff1f;企业被列入工商异常一般会对公司的经营…

实操了 AI 大模型项目的落地过程,成功实现了向 AI 大模型工程师的华丽转变

前言 根据《2024 年全球人工智能行业报告》最新的数据显示&#xff0c;全球 AI 市场预计将以每年超过 40% 的速度增长&#xff0c;到 2030 年市值将达到数万亿美元&#xff0c;这也是预示着在接下来的十年到十五年里&#xff0c;人工智能将获得巨大的发展红利。 在过去的一年…

大语言模型入门(四)——检索增强生成(RAG)

一、什么是检索增强生成 检索增强生成&#xff08;Retrieval-Augmented Generation&#xff0c;RAG&#xff09;由Facebook AI Research&#xff08;FAIR&#xff09;团队于2020年首次提出&#xff0c;这是一种结合了信息检索技术与语言生成模型的人工智能技术。它通过从外部知…

分词的艺术:为AI拆解文本

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

Koa学习

Koa 安装与配置 1. 初始化项目 在终端中执行以下命令&#xff1a; # 创建项目文件夹 mkdir koa cd koa# 初始化并安装依赖 npm init -y npm install koa npm install nodemon --save-dev2. 修改 package.json 在 package.json 文件中进行如下修改&#xff1a; {"type…